东北大学学报:自然科学版 ›› 2020, Vol. 41 ›› Issue (11): 1564-1570.DOI: 10.12068/j.issn.1005-3026.2020.11.007

• 信息与控制 • 上一篇    下一篇

双通道多感知卷积神经网络图像超分辨率重建

王鑫, 王翠荣, 王聪, 苑迎   

  1. (东北大学 计算机科学与工程学院, 辽宁 沈阳110169)
  • 收稿日期:2020-03-30 修回日期:2020-03-30 出版日期:2020-11-15 发布日期:2020-11-16
  • 通讯作者: 王鑫
  • 作者简介:王鑫(1978-),男,河北丰南人,东北大学秦皇岛分校讲师,博士; 王翠荣(1964-),女,河北唐山人,东北大学教授.
  • 基金资助:
    国家自然科学基金资助项目(61702089); 中央高校基本科研业务费专项资金资助项目(N182304021).

Dual-channel Multi-perception Convolutional Network for Image Super-Resolution

WANG Xin, WANG Cui-rong, WANG Cong, YUAN Ying   

  1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China.
  • Received:2020-03-30 Revised:2020-03-30 Online:2020-11-15 Published:2020-11-16
  • Contact: WANG Cong
  • About author:-
  • Supported by:
    -

摘要: 基于深度卷积神经网络的单幅图像超分辨率重建取得了显著研究成果.但随着深度卷积神经网络规模的不断扩大,如何降低网络构建难度和计算成本成为一个难点.为此,提出了一种双通道多感知卷积神经网络(DMCN)模型.该模型在两条具有不同卷积核的通道上建立了稠密连接,并构建了带有动态调节能力的层间融合结构.这种结构的设计使得小规模卷积神经网络便能获得图片特征信息的全面感知能力.实验结果表明,DMCN重建效果优于目前多数具有代表性的重建算法.

关键词: 单幅图像超分辨率重建, 双通道多感知卷积神经网络, 稠密连接, 残差网络, 深度学习

Abstract: Rececnt researches on single-image super-resolution based on deep convolutional neural networks have achieved remarkable results. However, with increasing neural network scale, to reduce the network constructing difficulty and the computation costs has become a difficult issue. To solve this problem, a dual-channel multi-perception convolutional neural network (DMCN) is proposed. Specifically, the dense skip connection between two convolutional channels with different sizes of convolution kernels is established. Then, an adjustable inter-layer fusion structure is established between different layers. This structure makes it possible to learn abundant image feature information through a small-scale convolutional neural network. The experimental results show that the proposed model outperforms most of the typical algorithms.

Key words: single-image super-resolution, dual-channel multi-perception convolutional neural network(DMCN), dense skip connection, residual network, deep learning

中图分类号: