[1] |
王庆东, 郭立新, 张驰, 等. 不同椎间融合方法对腰椎动态特性的影响[J].东北大学学报(自然科学版), 2022, 43(1): 76-82.
|
|
Wang Qing-dong, Guo Li-xin, Zhang Chi, et al. Effects of different interbody fusion methods on dynamic characteristics of lumbar spines[J]. Journal of Northeastern University(Natural Science), 2022, 43(1): 76-82.
|
[2] |
Cummings S R. Melton (L J. Epidemiology) and outcomes of osteoporotic fractures[J]. Lancet, 2002, 359:1761-1767.
|
[3] |
Qiao N, Villemure I, Wang Z, et al. Optimization of S2-alar-iliac screw (S2AI) fixation in adult spine deformity using a comprehensive genetic algorithm and finite element model personalized to patient geometry and bone mechanical properties[J]. Spine Deformity, 2024, 12: 595-602.
|
[4] |
Cook S D, Salkeld S L, Stanley T, et al. Biomechanical study of pedicle screw fixation in severely osteoporotic bone[J]. Spine Journal, 2004, 4: 402-408..
|
[5] |
Brier-Jones J E, Palmer D K, Inceoglu S, et al. Vertebral body fractures after transpsoas interbody fusion procedures[J]. Spine Journal, 2011,11:1068-1072.
|
[6] |
Fan W, Zhang C, Zhang D X, et al. Biomechanical comparison of the influence of osteoporosis on the lumbar spine after lumbar interbody fusion surgery or non-fusion dynamic stabilization surgery under whole body vibration[J]. Innovation and Research in BioMedical Engineering, 2023,44(5): 100797.
|
[7] |
Wade K R, Schollum M L, Robertson P A, et al. Vibration really does disrupt the disc-a microanatomical investigation[J]. Spine, 2016, 41 (15):1185-1198.
|
[8] |
Bovenzi M, Hulshof C T J. An updated review of epidemiologic studies on the relationship between exposure to whole-body vibration and low back pain[J]. Journal of Sound and Vibration, 1998,215 (4): 595–611.
|
[9] |
Wilke H J, Kaiser D, Volkheimer D, et al. A pedicle screw system and a lamina hook system provide similar primary and long-term stability: a biomechanical in vitro study with quasi-static and dynamic loading conditions[J]. European Spine Journal, 2016, 25(9): 2919-2928.
|
[10] |
李武杰, 郭立新. 不同姿势对脊椎胸腰节段爆裂骨折的影响[J]. 东北大学学报(自然科学版), 2020, 41(4):534-540.
|
|
Li Wu-jie, Guo Li-xin. Effect of different postures on burst fracture of thoracolumbar segment[J]. Journal of Northeastern University (Natural Science), 2020, 41(4): 534-540.
|
[11] |
Cheung K M C, Karppinen J, Chan D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals[J]. Spine, 2009, 34(9):934-940.
|
[12] |
Su X L, Shen H, Shi W D, et al. Dynamic characteristics of osteoporotic lumbar spine under vertical vibration after cement augmentation[J]. American Journal of Translational Research, 2017,9: 4036-4045.
|
[13] |
Patwardhan A G, Havey R M, Meade K P, et al. A follower load increases the load-carrying capacity of the lumbar spine in compression[J]. Spine, 1999, 24(10): 1003-1009.
|
[14] |
Dickerson D A, Sander E A, Nauman E A. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects[J]. Biomechanics & Modeling in Mechanobiology, 2008, 7(3):191-202.
|
[15] |
Shirazi-Adl A, Parnianpour M. Role of posture in mechanics of the lumbar spine in compression[J]. Journal of Spinal Disorders, 1996, 9(4):277-286.
|
[16] |
Drain O, Lenoir T, Dauzac C, et al. Influence of disc height on outcome of posterolateral fusion[J]. Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil Moteur, 2008, 94(5): 472-480.
|
[17] |
Zhang L C, Yang G J, Wu L J, et al. The biomechanical effects of osteoporosis vertebral augmentation with cancellous bone granules or bone cement on treated and adjacent non-treated vertebral bodies: a finite element evaluation[J]. Clinical Biomechanics, 2010,25:166-172.
|
[18] |
Ghasemi A A. Adjacent segment degeneration after posterior lumbar fusion: an analysis of possible risk factors[J]. Clinical Neurology and Neurosurgery, 2016,143:15-18.
|
[19] |
Jung J M, Chung C K, Kim C H, et al. Clinical and radiologic outcomes of single-level direct lateral lumbar interbody fusion in patients with osteopenia[J]. Journal of Clinical Neuroscience, 2019,64:180-186.
|
[20] |
Zhang M Z, Pu F, Xu L Q, et al. Long-term effects of placing one or two cages in instrumented posterior lumbar interbody fusion[J]. International Orthopaedics, 2016,6: 1239-1246.
|
[21] |
Cunningham B W, Setter J C, Shono Y, et al. Static and cyclical biomechanical analysis of pedicle screw spinal constructs[J]. Spine, 1993,12:1677-1688.
|
[22] |
Boissiere L, Perrin G, Rigal J, et al. Lumbar-sacral fusion by a combined approach using interbody peek cage and posterior pedicle-screw fixation: clinical and radiological results from a prospective study[J]. Orthopaedics & Traumatology: Surgery & Research, 2013,99(8): 945-951.
|
[23] |
Bylskiaustrow D I, Wall E J, Rupert M P, et al. Growth plate forces in the adolescent human knee: a radiographic and mechanical study of epiphyseal staples[J]. Journal of Pediatric Orthopaedics, 2001,21(6): 817-823.
|
[24] |
Cho J H, Hwang C J, Kim H, et al. Effect of osteoporosis on the clinical and radiological outcomes following one-level posterior lumbar interbody fusion[J]. Journal of Orthopaedic Science, 2018,23(6): 870-877.
|
[25] |
Bylskiaustrow D I, Glos D L, Wall E J, et al. Scoliosis vertebral growth plate histomorphometry: comparisons to controls, growth rates, and compressive stresses[J]. Journal of Orthopaedic Research, 2018, 36(9): 2450-2459.
|