东北大学学报(自然科学版) ›› 2008, Vol. 29 ›› Issue (3): 362-365+382.DOI: -

• 论著 • 上一篇    下一篇

柔性作业车间多目标调度优化研究

刘晓霞;谢里阳;陶泽;郝长中;   

  1. 东北大学机械工程与自动化学院;东北大学机械工程与自动化学院;沈阳理工大学机械工程学院;沈阳理工大学机械工程学院 辽宁 沈阳 110004;辽宁 沈阳 110004;辽宁 沈阳 110168;辽宁 沈阳 110168
  • 收稿日期:2013-06-22 修回日期:2013-06-22 出版日期:2008-03-15 发布日期:2013-06-22
  • 通讯作者: Liu, X.-X.
  • 作者简介:-
  • 基金资助:
    国家高技术研究发展计划项目(2001AA412020).

Research on multi-objective scheduling optimization for flexible job shop

Liu, Xiao-Xia (1); Xie, Li-Yang (1); Tao, Ze (2); Hao, Chang-Zhong (2)   

  1. (1) School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China; (2) School of Mechanical Engineering, Shenyang Ligong University, Shenyang 110168, China
  • Received:2013-06-22 Revised:2013-06-22 Online:2008-03-15 Published:2013-06-22
  • Contact: Liu, X.-X.
  • About author:-
  • Supported by:
    -

摘要: 研究了多目标柔性作业车间调度问题(FJSP),提出了一种基于Pareto的混合遗传算法,并建立了包括生产周期、总拖期时间和机床负载在内的多目标优化模型.该算法采用基于工序的编码方式和活动化解码方法,将Pareto排序策略与Pareto竞争方法结合起来.为了保证解的多样性,采用小生境技术并同时使用多种交叉方法,用Pareto解集过滤器保存进化过程中的最优个体,防止最优解的遗失.算法最后给出问题的Pareto最优解集.仿真试验证明,提出的混合遗传算法可以有效解决多目标FJSP.

关键词: 多目标优化, Pareto最优, 遗传算法, FJSP

Abstract: A hybrid genetic algorithm based on Pareto was proposed and applied to the multi-objective flexible job shop scheduling problem (FJSP), and a multi-objective FJSP optimization model was developed including make-span, total tardiness and machine utilization rate. The algorithm combines Pareto ranking strategy with Pareto competition method. The operation-based encoding and an active scheduling decoding method are employed. In order to promote solution diversity, the niche technology and many kinds of crossover operations are used here. Pareto filter saves the optimum individual occurring in the course of evolution, which avoids losing the optimum solutions. The set of Pareto optimum solutions is obtained. In the end, a simulation experiment was carried out to illustrate that the proposed method can solve multi-objective FJSP effectively.

中图分类号: