东北大学学报(自然科学版) ›› 2007, Vol. 28 ›› Issue (4): 549-552.DOI: -

• 论著 • 上一篇    下一篇

同轴度误差的数模研究

陈立杰;张镭;张玉;   

  1. 东北大学机械工程与自动化学院;东北大学机械工程与自动化学院;东北大学机械工程与自动化学院 辽宁沈阳110004;辽宁沈阳110004;辽宁沈阳110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2007-04-15 发布日期:2013-06-24
  • 通讯作者: Chen, L.-J.
  • 作者简介:-
  • 基金资助:
    辽宁省自然科学基金资助项目(20032017)

Mathematical models study on coaxial error

Chen, Li-Jie (1); Zhang, Lei (1); Zhang, Yu (1)   

  1. (1) School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2007-04-15 Published:2013-06-24
  • Contact: Chen, L.-J.
  • About author:-
  • Supported by:
    -

摘要: 根据国家标准中有关同轴度误差的定义,建立了任意空间位置回转表面同轴度误差的最小二乘数学模型,该模型的坐标原点可以任意选取,各离散采样点之间也不要求为等角度间隔.用计算机进行了仿真分析,结果表明:该模型具有理论的正确性和实际的可行性.在所建立的数学模型的基础上,采用四维无约束的最优化的直接算法,可求得符合最小条件的同轴度误差值.建立的数学模型既可用于三坐标测量机也可用于其他智能量仪测量零件的同轴度误差.

关键词: 直角坐标, 同轴度误差, 数学模型, 最小二乘法, 仿真

Abstract: A solution to the key problem of evaluating coaxial error in rectangular coordinates was provided. According to the definition of coaxial error as given in Chinese National Standard, a mathematical model based on least square method was developed to evaluate coaxial error, where the origin of coordinate could be selected randomly, and all sampling points were not required at intervals of equal angle. The simulation results indicated that the model is theoretical correct and practical, based on which the coaxial error to meet the requirement for minimum can be directly computed by way of the 4-D non-restraint optimization algorithm. The model can be used for either the 3-D coordinate measuring machines or other intelligent instruments for parts measurement.

中图分类号: