东北大学学报(自然科学版) ›› 2013, Vol. 34 ›› Issue (7): 1061-1063.DOI: -

• 数学 • 上一篇    

由拟凸泛函构造的非凸收缩核

张国伟1,赵土华2   

  1. (1.东北大学理学院,辽宁沈阳110819;2.解放军信息工程大学电子技术学院,河南郑州450004)
  • 收稿日期:2014-08-19 修回日期:2014-08-19 出版日期:2013-07-15 发布日期:2013-12-31
  • 通讯作者: 张国伟
  • 作者简介:张国伟(1965-),男,辽宁沈阳人,东北大学教授,博士.
  • 基金资助:
    辽宁省自然科学基金资助项目(201102070).

Nonconvex Retracts Constructed by Quasiconvex Functionals

ZHANG Guowei1, ZHAO Tuhua2   

  1. 1. School of Sciences, Northeastern University, Shenyang 110819, China; 2. Institute of Electronic Technology, PLA Information Engineering University, Zhengzhou 450004, China.
  • Received:2014-08-19 Revised:2014-08-19 Online:2013-07-15 Published:2013-12-31
  • Contact: ZHANG Guowei
  • About author:-
  • Supported by:
    -

摘要: Banach空间中的非空闭凸子集是收缩核.通过一致连续的非负拟凸泛函构造了Banach空间中的两个非凸收缩核,其中一个是锥中的子集,另一个不需要限制在锥中,但是需要空间是无穷维的以及泛函是偶的条件.推广了已有文献中由一致连续非负凸泛函构造非凸收缩核的结果,并且在连续函数空间中给出了具体的例子.

关键词: 不动点, 收缩核, 拟凸泛函, 锥, 非凸

Abstract: The nonempty, closed convex subset in Banach space is a retract. Two nonconvex retracts are constructed in Banach spaces by the uniformly continuous nonnegative quasiconvex functional. One of the retracts is a subset of cone, and the other does not need to be restricted in a cone, but needs the infinitedimensional space and the even functional. The earlier results are extended where nonconvex retracts are constructed by the uniformly continuous nonnegative convex functionals and an example is given in the space of continuous functions.

Key words: fixed point, retract, quasiconvex functional, cone, nonconvex

中图分类号: