LIU Peng1,2, DU Jia-zhi3, LYU Wei-gang2,4, DOU Ming-wu1
1. Computing Center, Ocean University of China, Qingdao 266100, China; 2. School of Information, Ocean University of China, Qingdao 266100, China; 3. School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China; 4. Department of Educational Technology, Ocean University of China, Qingdao 266100, China.
LIU Peng, DU Jia-zhi, LYU Wei-gang, DOU Ming-wu. A Modified KNN Classifier for Unbalanced Dataset[J]. Journal of Northeastern University Natural Science, 2019, 40(7): 932-936.
[1]Bai J,Xie S,Wang K,et al.Simulation research on early after depolarizations-mediated ventricular fibrillation based on a heart model[J].Progress in Biochemistry & Biophysics,2015,42(10):955-961. [2]Yang F,Zhang L,Lu W,et al.Depth attenuation degree based visualization for cardiac ischemic electrophysiological feature exploration[J].BioMedical Research International,2016,2016(2):1-8. [3]Lu W,Li J,Yang F,et al.Effects of acute global ischemia on re-entrant arrhythmogenesis:a simulation study[J].Journal of Biological Systems,2015,23(2):213-230. [4]Jadhav S M,Nalbalwar S L,Ghatol A A.Artificial neural network models based cardiac arrhythmia disease diagnosis from ECG signal data[J].International Journal of Computer Applications,2012,44(15):8-13. [5]Bai J,Wang K,Zhang H.Potential pathogenesis discovery of arrhythmia based on cardiac electrophysiological models:research progress[J].Progress in Biochemistry & Biophysics,2016,43(2):128-140. [6]Lu W,Li J,Yang F,et al.Simulation study of ventricular arrhythmia at the early stage of global ischemic condition[J].Progress in Biochemistry and Biophysics,2015,42(2):189-194. [7]Kumar R G,Kumaraswamy Y S.A neural network approach for cardiac arrhythmia classification[J].IUP Journal of Computer Sciences,2013,7(1):62-70. [8]Jambukia S H,Dabhi V K,Prajapati H B.Classification of ECG signals using machine learning techniques:a survey[C]// Computer Engineering and Applications(ICACEA),2015 International Conference on Advances.Ghaziabad,2015:714-721. [9]Aslanidi O V,Clayton R H,Lambert J L,et al.Dynamical and cellular electrophysiological mechanisms of ECG changes during ischaemia[J].Journal of Theoretical Biology,2005,237(4):369-381. [10]Thakor N V,Zhu Y S.Applications of adaptive filtering to ECG analysis:noise cancellation and arrhythmia detection[J]. IEEE Transactions on Biomedical Engineering,1991,38(8):785-794. [11]Coast D A,Stern R M,Cano G G,et al.An approach to cardiac arrhythmia analysis using hidden Markov models[J].IEEE Transactions on Biomedical Engineering,1990,37(9):826-836. [12]Sultana N,Kamatham Y.MSVM-based classifier for cardiac arrhythmia detection[C]// Advances in Computing,Communications and Informatics(ICACCI).Jaipur,2016:1314-1318. [13]Moody G B,Mark R G.The impact of the MIT-BIH arrhythmia database[J].IEEE Engineering in Medicine and Biology Magazine,2001,20(3):45-50. [14]Blake C L,Merz C J.UCI repository of machine learning databases [EB/OL].(2016-05-27).http://www.ics.uci.edu/~mlearn/MLRepository.html. [15]Cover T M.Estimation by the nearest-neighbor rule[J].IEEE Transactions on Information Theory,1968,14(1):50-55. [16]Dudani S A.The distance-weighted k-nearest-neighbor rule[J].IEEE Transactions on Systems,Man,and Cybernetics,1976(4):325-327. [17]Zuo W,Zhang D,Wang K.On kernel difference-weighted k-nearest neighbor classification[J].Pattern Analysis and Applications,2008,11(3/4):247-257. [18]Khare S,Bhandari A,Singh S,et al.ECG arrhythmia classification using spearman rank correlation and support vector machine[C]//Proceedings of the International Conference on Soft Computing for Problem Solving.Berlin:Springer,2012:591-598. [19]Salzberg S L.On comparing classifiers:pitfalls to avoid and a recommended approach[J].Data Mining and Knowledge Discovery,1997,1(3):317-328.