JIANG Yang, ZHAO Feng-yu, CHEN Xiao. Research on Robotic Grasping Detection Based on Improved Cascade R-CNN Model[J]. Journal of Northeastern University(Natural Science), 2023, 44(6): 799-807.
[1]Lenz I,Lee H,Saxena A.Deep learning for detecting robotic grasps[J].The International Journal of Robotics Research,2015,34(4/5):705-724. [2]Wei J,Liu H,Yan G,et al.Robotic grasping recognition using multi-modal deep extreme learning machine[J].Multidimensional Systems and Signal Processing,2017,28(3):817-833. [3]Wang Z,Li Z,Wang B,et al.Robot grasp detection using multimodal deep convolutional neural networks[J].Advances in Mechanical Engineering,2016,8(9):1687814016668077. [4]李秀智,李家豪,张祥银,等.基于深度学习的机器人最优抓取姿态检测方法[J].仪器仪表学报,2020,41(5):108-117.(Li Xiu-zhi,Li Jia-hao,Zhang Xiang-yin,et al.Robot optimal grasping posture detection method based on deep learning[J].Instruments Journal,2020,41(5):108-117.) [5]崔少伟,魏俊杭,王睿,等.基于视触融合的机器人抓取滑动检测[J].华中科技大学学报(自然科学版),2020,48(1):98-102.(Cui Shao-wei,Wei Jun-hang,Wang Rui,et al.Robot grasping sliding detection based on visual-tactile fusion[J].Journal of Huazhong University of Science and Technology (Natural Science Edition),2020,48(1):98-102.) [6]伍广彬.基于领域自适应学习的机器人多目标物体抓取识别算法研究[D].哈尔滨:哈尔滨工业大学,2021.(Wu Guang-bin.Research on robot multi-target object grasping recognition algorithm based on domain adaptive learning[D].Harbin :Harbin Institute of Technology,2021.) [7]Guo D,Sun F,Liu H,et al.A hybrid deep architecture for robotic grasp detection[C]//2017 IEEE International Conference on Robotics and Automation(ICRA).Singapore: IEEE,2017:1609-1614. [8]夏晶,钱堃,马旭东,等.基于级联卷积神经网络的机器人平面抓取位姿快速检测[J].机器人,2018,40(6):794-802.(Xia Jing,Qian Kun,Ma Xu-dong,et al.Rapid detection of robot plane grasping pose based on cascaded convolutional neural network[J].Robot,2018,40(6):794-802.) [9]喻群超,尚伟伟,张驰.基于三级卷积神经网络的物体抓取检测[J].机器人,2018,40(5):762-768.(Yu Qun-chao,Shang Wei-wei,Zhang Chi.Object grasping detection based on three-level convolutional neural network[J].Robot,2018,40(5):762-768.) [10]Depierre A,Dellandréa E,Chen L.Jacquard:a large scale dataset for robotic grasp detection[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Madrid,Spain:IEEE,2018:3511-3516. [11]Morrison D,Corke P,Leitner J.Learning robust,real-time,reactive robotic grasping[J].The International Journal of Robotics Research,2020,39(2/3):183-201. [12]Saxena A,Driemeyer J,Ng A Y.Robotic grasping of novel objects using vision[J].The International Journal of Robotics Research,2008,27(2):157-173. [13]Le Q V,Kamm D,Kara A F,et al.Learning to grasp objects with multiple contact points[C]//2010 IEEE International Conference on Robotics and Automation.Anchorage: IEEE,2010:5062-5069. [14]Wang P,Ye F,Chen X,et al.Datanet:deep learning based encrypted network traffic classification in SDN home gateway[J].IEEE Access,2018,6:55380-55391. [15]Deng Y,Ren Z,Kong Y,et al.A hierarchical fused fuzzy deep neural network for data classification[J].IEEE Transactions on Fuzzy Systems,2016,25(4):1006-1012. [16]Wang K,Zhang D,Li Y,et al.Cost-effective active learning for deep image classification[J].IEEE Transactions on Circuits and Systems for Video Technology,2016,27(12):2591-2600. [17]Girshick R,Donahue J,Darrell T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus,2014:580-587. [18]Girshick R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.Santiago,2015:1440-1448. [19]Ren S,He K,Girshick R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149. [20]Redmon J,Angelova A.Real-time grasp detection using convolutional neural networks[C]//2015 IEEE International Conference on Robotics and Automation(ICRA).Seattle,WA:IEEE,2015:1316-1322. [21]Park D,Chun S Y.Classification based grasp detection using spatial transformer network[J].arXiv Preprint arXiv:1803.01356,2018. [22]Asif U,Tang J,Harrer S.GraspNet:an efficient convolutional neural network for real-time grasp detection for low-powered devices[C]//International Joint Conference on Artificial Intelligence.Stockholm:CVPR,2018:4875-4882. [23]Cai Z,Vasconcelos N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:CVPR,2018:6154-6162. [24]Li A,Yang X,Zhang C.Rethinking classification and localization for cascade R-CNN[J].arXiv Preprint arXiv:1907.11914,2019. [25]Chen L C,Papandreou G,Kokkinos I,et al.Semantic image segmentation with deep convolutional nets and fully connected CRFs[J].arXiv Preprint arXiv:1412.7062,2014. [26]Xie S,Girshick R,Dollár P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:1492-1500. [27]Saxena A,Driemeyer J,Kearns J,et al.Robotic grasping of novel objects[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems.Vancouver,2006:1209-1216. [28]Jiang Y,Moseson S,Saxena A.Efficient grasping from RGBD images:learning using a new rectangle representation[C]//2011 IEEE International Conference on Robotics and Automation.Shanghai:IEEE,2011:3304-3311. [29]Tsai R Y,Lenz R K.A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J].IEEE Transactions on Robotics and Automation,1989,5(3):345-358.