Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (1): 52-60.DOI: 10.12068/j.issn.1005-3026.2025.20230206
• Mechanical Engineering • Previous Articles Next Articles
Ya-dong GONG, Yuan-feng LI, Quan WEN, Qi-zhen REN
Received:
2023-07-17
Online:
2025-01-15
Published:
2025-03-25
CLC Number:
Ya-dong GONG, Yuan-feng LI, Quan WEN, Qi-zhen REN. Comparative Experimental Study on Micro-grinding Performance of 2.5D Cf/SiC Composites and SiC Ceramics[J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 52-60.
参数 | 2.5D Cf/SiC | SiC陶瓷 |
---|---|---|
抗拉强度/MPa | 280 | 441 |
抗弯强度/MPa | 220 | 500 |
断裂韧性/(MPa·m1/2) | 20.2~31.0 | 3.0~3.5 |
密度/(g·cm-3) | 2.0 | 3.1 |
纤维直径/μm | 7 | — |
纤维体积分数/% | 37 | — |
Table 1 Performance parameters of 2.5D Cf/SiC
参数 | 2.5D Cf/SiC | SiC陶瓷 |
---|---|---|
抗拉强度/MPa | 280 | 441 |
抗弯强度/MPa | 220 | 500 |
断裂韧性/(MPa·m1/2) | 20.2~31.0 | 3.0~3.5 |
密度/(g·cm-3) | 2.0 | 3.1 |
纤维直径/μm | 7 | — |
纤维体积分数/% | 37 | — |
因素 | 水平 | ||
---|---|---|---|
1 | 2 | 3 | |
磨削速度vs/(m·s-1) | 0.471,0.942,1.414,1.885,2.356 | 1.414 | 1.414 |
磨削深度ap/μm | 9 | 3,6,9,12,15 | 9 |
进给速度vw/(μm·s-1) | 120 | 120 | 20,70,120,170,220 |
Table 2 Process parameters in the single‑factor experiment
因素 | 水平 | ||
---|---|---|---|
1 | 2 | 3 | |
磨削速度vs/(m·s-1) | 0.471,0.942,1.414,1.885,2.356 | 1.414 | 1.414 |
磨削深度ap/μm | 9 | 3,6,9,12,15 | 9 |
进给速度vw/(μm·s-1) | 120 | 120 | 20,70,120,170,220 |
试验序号 | 工艺参数 | 2.5D Cf/SiC | SiC陶瓷 | ||||||
---|---|---|---|---|---|---|---|---|---|
vs/(m·s-1) | ap/μm | vw/(μm·s-1) | Fn/N | Ft/N | Ra/μm | Fn/N | Ft/N | Ra/μm | |
1 | 0.471 | 9 | 120 | 1.223 | 0.980 | 1.004 | 1.407 | 1.146 | 1.235 |
2 | 0.942 | 9 | 120 | 0.958 | 0.778 | 0.921 | 1.219 | 0.967 | 1.074 |
3 | 1.414 | 9 | 120 | 0.627 | 0.511 | 0.805 | 0.984 | 0.839 | 0.927 |
4 | 1.885 | 9 | 120 | 0.496 | 0.366 | 0.663 | 0.767 | 0.657 | 0.846 |
5 | 2.356 | 9 | 120 | 0.385 | 0.294 | 0.587 | 0.619 | 0.526 | 0.690 |
6 | 1.414 | 3 | 120 | 0.293 | 0.222 | 0.501 | 0.525 | 0.411 | 0.638 |
7 | 1.414 | 6 | 120 | 0.394 | 0.303 | 0.622 | 0.748 | 0.634 | 0.792 |
8 | 1.414 | 9 | 120 | 0.627 | 0.511 | 0.805 | 0.984 | 0.839 | 0.927 |
9 | 1.414 | 12 | 120 | 0.873 | 0.657 | 0.916 | 1.289 | 1.046 | 1.106 |
10 | 1.414 | 15 | 120 | 1.122 | 0.888 | 1.102 | 1.513 | 1.206 | 1.356 |
11 | 1.414 | 9 | 20 | 0.337 | 0.269 | 0.632 | 0.594 | 0.475 | 0.747 |
12 | 1.414 | 9 | 70 | 0.428 | 0.382 | 0.729 | 0.767 | 0.642 | 0.852 |
13 | 1.414 | 9 | 120 | 0.627 | 0.511 | 0.805 | 0.984 | 0.839 | 0.927 |
14 | 1.414 | 9 | 170 | 0.756 | 0.597 | 0.922 | 1.094 | 0.956 | 0.989 |
15 | 1.414 | 9 | 220 | 0.852 | 0.685 | 0.985 | 1.209 | 1.035 | 1.020 |
Table 3 Experimental results of single‑factor micro‑grinding
试验序号 | 工艺参数 | 2.5D Cf/SiC | SiC陶瓷 | ||||||
---|---|---|---|---|---|---|---|---|---|
vs/(m·s-1) | ap/μm | vw/(μm·s-1) | Fn/N | Ft/N | Ra/μm | Fn/N | Ft/N | Ra/μm | |
1 | 0.471 | 9 | 120 | 1.223 | 0.980 | 1.004 | 1.407 | 1.146 | 1.235 |
2 | 0.942 | 9 | 120 | 0.958 | 0.778 | 0.921 | 1.219 | 0.967 | 1.074 |
3 | 1.414 | 9 | 120 | 0.627 | 0.511 | 0.805 | 0.984 | 0.839 | 0.927 |
4 | 1.885 | 9 | 120 | 0.496 | 0.366 | 0.663 | 0.767 | 0.657 | 0.846 |
5 | 2.356 | 9 | 120 | 0.385 | 0.294 | 0.587 | 0.619 | 0.526 | 0.690 |
6 | 1.414 | 3 | 120 | 0.293 | 0.222 | 0.501 | 0.525 | 0.411 | 0.638 |
7 | 1.414 | 6 | 120 | 0.394 | 0.303 | 0.622 | 0.748 | 0.634 | 0.792 |
8 | 1.414 | 9 | 120 | 0.627 | 0.511 | 0.805 | 0.984 | 0.839 | 0.927 |
9 | 1.414 | 12 | 120 | 0.873 | 0.657 | 0.916 | 1.289 | 1.046 | 1.106 |
10 | 1.414 | 15 | 120 | 1.122 | 0.888 | 1.102 | 1.513 | 1.206 | 1.356 |
11 | 1.414 | 9 | 20 | 0.337 | 0.269 | 0.632 | 0.594 | 0.475 | 0.747 |
12 | 1.414 | 9 | 70 | 0.428 | 0.382 | 0.729 | 0.767 | 0.642 | 0.852 |
13 | 1.414 | 9 | 120 | 0.627 | 0.511 | 0.805 | 0.984 | 0.839 | 0.927 |
14 | 1.414 | 9 | 170 | 0.756 | 0.597 | 0.922 | 1.094 | 0.956 | 0.989 |
15 | 1.414 | 9 | 220 | 0.852 | 0.685 | 0.985 | 1.209 | 1.035 | 1.020 |
1 | Fu H, Jiang L P, Song Q H,et al.Grinding surface roughness prediction for silicon nitride ceramics:a dynamic grinding force and frequency domain approach[J].Ceramics International,2023,49(22):35239-35253. |
2 | Zhang X H, Wang X, Jiao W L,et al.Evolution from microfibers to nanofibers toward next‑generation ceramic matrix composites:a review[J].Journal of the European Ceramic Society,2023,43(4):1255-1269. |
3 | An Q L, Chen J, Ming W W,et al.Machining of SiC ceramic matrix composites:a review[J].Chinese Journal of Aeronautics,2021,34(4):540-567. |
4 | Du J G, Ming W Y, Ma J,et al.New observations of the fiber orientations effect on machinability in grinding of C/SiC ceramic matrix composite[J].Ceramics International,2018,44(12):13916-13928. |
5 | Zhou K, Xiao G J, Xu J Y,et al.Material removal behavior of Cf/SiC ceramic matrix composites as a function of abrasive wear during diamond abrasive belt grinding[J].Wear,2021,486:43-59. |
6 | Guo M X, Tao J B, Wu C J,et al.High‑speed grinding fracture mechanism of Cf/SiC composite considering interfacial strength and anisotropy[J].Ceramics International,2023,49(2):2600-2612. |
7 | Chen J, Ming W W, Chen M,et al.Investigation on machined surface quality in ultrasonic‑assisted grinding of Cf/SiC composites based on fracture mechanism of carbon fibers[J].The International Journal of Advanced Manufacturing Technology,2020,109(5):1583-1599. |
8 | 屈硕硕,巩亚东,杨玉莹,等.单向碳纤维增强陶瓷基复合材料磨削表面质量研究[J].东北大学学报(自然科学版),2019,40(9):1310-1315. |
Qu Shuo‑shuo, Gong Ya‑dong, Yang Yu‑ying,et al.Study on grinding surface quality of unidirectional carbon fiber reinforced ceramic matrix composites[J].Journal of Northeastern University(Natural Science),2019,40(9):1310-1315. | |
9 | Liu Q, Huang G Q, Xu X P,et al.Influence of grinding fiber angles on grinding of the 2D-Cf /C-SiC composites[J].Ceramics International,2018,44(11):12774-12782. |
10 | Sun Z G, Kong C Y, Niu X M,et al.Optimization and reliability analysis of 2.5D C/SiC composites turbine stator vane[J].Applied Composite Materials,2014,21(5):789-803. |
11 | 黄水泉,高尚,黄传真,等.脆性材料磨粒加工的纳米尺度去除机理[J].金刚石与磨料磨具工程,2022,42(3):257-267. |
Huang Shui‑quan, Gao Shang, Huang Chuan‑zhen,et al.Nano‑scale removal mechanism of abrasive grain processing of brittle materials[J].Diamond and Abrasive Engineering,2022,42(3):257-267. | |
12 | Li W, Long C J, Ma W Q,et al.Key technologies for laser‑assisted precision grinding of 3D C/C-SiC composites[J].Journal of the European Ceramic Society,2023,43(10):4322-4335. |
13 | 任敬心,华定安.磨削原理[M].北京:电子工业出版社,2011:356-361. |
Ren Jing‑xin, Hua Ding‑an.Grinding principle[M]. Beijing:Electronic Industry Press,2011:356-361. |
[1] | Yuan-feng LI, Quan WEN, Ya-dong GONG, Ben-jia TANG. Experimental Study on Micro-scale Grinding of 2.5D Cf /SiC Composites [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1143-1149. |
[2] | Lian-jie MA, Li-ye SUN, Zhe QIU, Hong-shuang LI. Grinding Force Modeling of Two-Dimensional Ultrasonic Vibration Assisted Grinding [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1135-1142. |
[3] | Feng DAI, Jing-xian LIU. Analysis of the Aging Behavior of Polyester Filter Media for Steel Companies in a Composite Environment [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 883-889. |
[4] | Yun-guang ZHOU, Chuan-chuan TIAN, Shu-hai WANG, Han CHEN. Removal Mechanism and Effect of Parameters on Grinding Force in Grinding SiC Ceramics [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 548-554. |
[5] | Xue-long WEN, Hong-ze GUI, Ya-dong GONG, Meng-shan WANG. Experimental Study on the Micro-scale Grinding Force of High-Entropy Alloys [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1734-1743. |
[6] | Guan-yao QIAO, Jia-yi XU, Chun-yu ZHAO. 3-D Surface Morphology Detection Method Based on Motion Error [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1726-1733. |
[7] | ZHANG Jia-hao, ZOU Ping, WEI Shi-yu, LIANG Fu-qiang. Experimental Study on Single-Excitation 3-D Ultrasonic Turning Technology [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1152-1159. |
[8] | FANG Rui, ZOU Ping, DUAN Jing-wei, WEI Shi-yu. Experimental Research on Friction Reduction Characteristics and Surface Quality of 3D Ultrasonic Vibration Assisted Turning [J]. Journal of Northeastern University(Natural Science), 2023, 44(2): 233-241. |
[9] | SUN Yao, TANG Ben-jia, GONG Ya-dong, LI Si-hui. Preparation Method and Experimental Study of Array Microholes on the Surface of Nickel-Based Single Crystal Superalloy [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1719-1725. |
[10] | JIANG Shi-jie, HU Ke, CHEN Pi-feng, ZHAN Ming. Theoretical and Experimental Investigation on the Three-Dimensional Surface Roughness of Fused Filament Fabrication Products [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1290-1297. |
[11] | WEN Xue-long, WANG Cheng-bao, GONG Ya-dong, SUN Fu-qiang. Preparation of Coated Micro-grinding Tools and Experimental Research on Grinding Surface Quality [J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 681-688. |
[12] | WEN Xue-long, LI Jia-yu, LI Xin-yan. Influencing Factors of Grinding Surface Quality of TiC-Coated Micro-grinding Tools [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 534-540. |
[13] | ZHOU Yun-guang, TIAN Chuan-chuan, MA Lian-jie, BI Chang-bo. Experimental Study on Surface Quality in Micro-scale Grinding of Zirconia Ceramics [J]. Journal of Northeastern University(Natural Science), 2022, 43(1): 83-88. |
[14] | ZHAO Chun-yu, CHENG Da-zhong, GENG Hao-bo. Research on 2-D Surface Topography Detection Method of Turning Workpieces [J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1299-1306. |
[15] | JIANG Shi-jie, HU Ke, CHEN Pi-feng, SIYAJEU Yannick. Theoretical Model and Experimental Verification of Surface Roughness of Fused Filament Fabrication Plates [J]. Journal of Northeastern University(Natural Science), 2021, 42(7): 980-986. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||