Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (3): 60-68.DOI: 10.12068/j.issn.1005-3026.2025.20230267
• Mechanical Engineering • Previous Articles Next Articles
Hong GUAN1, Qian XIONG1, Hui MA1,2(), Wei-wei WANG1
Received:
2023-09-13
Online:
2025-03-15
Published:
2025-05-29
Contact:
Hui MA
About author:
MA Hui E-mail: mahui_2007@163.com
CLC Number:
Hong GUAN, Qian XIONG, Hui MA, Wei-wei WANG. Fault Feature Extraction and Analysis of Rotating Blade Cracks[J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 60-68.
指标类型 | 数值 | 1阶共振频率下能量指标 δ×10-3/J | 非共振频率下能量指标 δ×10-5/J |
---|---|---|---|
裂纹深度比γ | 0 | 0 | 0 |
0.1 | 0.46 | 0.35 | |
0.2 | 0.83 | 0.48 | |
0.3 | 4.31 | 0.85 | |
0.4 | 12.39 | 1.44 | |
0.5 | 20.92 | 3.62 | |
裂纹位置比λ | 0 | 0 | 0 |
0.1 | 28.4 | 2.32 | |
0.2 | 9.80 | 1.23 | |
0.3 | 4.31 | 0.85 | |
0.4 | 1.41 | 0.31 |
Table 1 Change trend of indicator δ
指标类型 | 数值 | 1阶共振频率下能量指标 δ×10-3/J | 非共振频率下能量指标 δ×10-5/J |
---|---|---|---|
裂纹深度比γ | 0 | 0 | 0 |
0.1 | 0.46 | 0.35 | |
0.2 | 0.83 | 0.48 | |
0.3 | 4.31 | 0.85 | |
0.4 | 12.39 | 1.44 | |
0.5 | 20.92 | 3.62 | |
裂纹位置比λ | 0 | 0 | 0 |
0.1 | 28.4 | 2.32 | |
0.2 | 9.80 | 1.23 | |
0.3 | 4.31 | 0.85 | |
0.4 | 1.41 | 0.31 |
指标 | 共振状态 | 非共振状态 | 特点 | |||
---|---|---|---|---|---|---|
不同深度 | 不同位置 | 不同深度 | 不同位置 | |||
Fe(n) | Fe(1) | × | × | √ | √ | 适用范围小 |
Fe(2) | × | × | √ | √ | ||
Fe(3) | × | × | √ | √ | ||
Fe(4) | × | × | × | × | ||
Rn(n) | Rn(1) | × | × | √ | √ | |
Rn(2) | × | × | √ | × | ||
Rn(3) | × | × | × | × | ||
Rn(4) | × | × | × | × | ||
能量指标δ | √ | √ | √ | √ | 稳定性好、灵敏度高、适用范围广 |
Table 2 Comparison of the indicators
指标 | 共振状态 | 非共振状态 | 特点 | |||
---|---|---|---|---|---|---|
不同深度 | 不同位置 | 不同深度 | 不同位置 | |||
Fe(n) | Fe(1) | × | × | √ | √ | 适用范围小 |
Fe(2) | × | × | √ | √ | ||
Fe(3) | × | × | √ | √ | ||
Fe(4) | × | × | × | × | ||
Rn(n) | Rn(1) | × | × | √ | √ | |
Rn(2) | × | × | √ | × | ||
Rn(3) | × | × | × | × | ||
Rn(4) | × | × | × | × | ||
能量指标δ | √ | √ | √ | √ | 稳定性好、灵敏度高、适用范围广 |
1 | Witek L. Crack propagation analysis of mechanically damaged compressor blades subjected to high cycle fatigue[J]. Engineering Failure Analysis, 2011, 18(4): 1223-1232. |
2 | Esfandiari A, Bakhtiari-Nejad F, Rahai A. Theoretical and experimental structural damage diagnosis method using natural frequencies through an improved sensitivity equation [J]. International Journal of Mechanical Sciences, 2013, 70: 79-89. |
3 | Ma T C, Song D, Shen J X, et al. Blade crack detection using variational model decomposition and time-delayed feedback nonlinear tri-stable stochastic resonance[J]. Structural Health Monitoring, 2023, 22(2): 1478-1493. |
4 | Madhavan S, Jain R, Sujatha C, et al. Vibration based damage detection of rotor blades in a gas turbine engine [J]. Engineering Failure Analysis, 2014, 46: 26-39. |
5 | Huang X, Zhang X D, Xiong Y W, et al. A novel intelligent fault diagnosis approach for early cracks of turbine blades via improved deep belief network using three-dimensional blade tip clearance [J]. IEEE Access, 2021, 9: 13039-13051. |
6 | Cao M S, Lu Q T, Su Z Q, et al. A nonlinearity-sensitive approach for detection of “breathing” cracks relying on energy modulation effect[J]. Journal of Sound and Vibration, 2022, 524: 116754. |
7 | 陈雪峰. 智能运维与健康管理[M]. 北京:机械工业出版社, 2020. |
Chen Xue-feng. Intelligent maintenance and health management[M]. Beijing: China Machine Press, 2020. | |
8 | 李宏坤, 贺长波, 于刚, 等. 利用稀疏盲源分离方法的叶片裂纹特征提取[J]. 振动工程学报, 2017, 30(3): 510-518. |
Li Hong-kun, He Chang-bo, Yu Gang, et al. Blade crack feature extraction by using sparse blind source separation algorithm [J]. Journal of Vibration Engineering, 2017, 30(3): 510-518. | |
9 | Yang L H, Ma M, Wu S M, et al. An improved analytical dynamic model for rotating blade crack: with application to crack detection indicator analysis [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2021, 40(4): 1935-1961. |
10 | Yu Z X, Xu C, Du F, et al. Time-domain spectral finite element method for wave propagation analysis in structures with breathing cracks [J]. Acta Mechanica Solida Sinica, 2020, 33(6): 812-822. |
11 | Cao S P, Hu Z J, Luo X H, et al. Research on fault diagnosis technology of centrifugal pump blade crack based on PCA and GMM [J]. Measurement, 2021, 173: 108558. |
12 | Lang Z Q, Peng Z K. A novel approach for nonlinearity detection in vibrating systems [J]. Journal of Sound and Vibration, 2008, 314(3/4/5): 603-615. |
13 | Peng Z K, Lang Z Q, Billings S A. Crack detection using nonlinear output frequency response functions [J]. Journal of Sound and Vibration, 2007, 301(3/4/5): 777-788. |
14 | Peng Z K, Lang Z Q, Wolters C, et al. Feasibility study of structural damage detection using NARMAX modelling and nonlinear output frequency response function based analysis [J]. Mechanical Systems and Signal Processing, 2011, 25(3): 1045-1061. |
15 | Liu Y, Zhao Y L, Lang Z Q, et al. Weighted contribution rate of nonlinear output frequency response functions and its application to rotor system fault diagnosis [J]. Journal of Sound and Vibration, 2019, 460: 114882. |
16 | Liu Y, Zhao Y L, Han J Y, et al. Combination algorithm for cracked rotor fault diagnosis based on NOFRFs and HHR [J]. Journal of Mechanical Science and Technology, 2019, 33(4): 1585-1593. |
17 | Wei K X, Ye L, Ning L W, et al. Nonlinear dynamic response of a cracked beam under multi-frequency excitation [J]. Advances in Vibration Engineering, 2013, 12(5): 431-446. |
18 | Mao H L, Tang W L, Huang Y X, et al. Research on NOFRF entropy-based detection method for early damage of pillar porcelain insulator [J]. Shock and Vibration, 2020, 2020: 2841254. |
19 | 李志农, 杜宜光, 肖尧先. 基于非线性输出频率响应函数的多裂纹转子故障诊断方法研究 [J]. 兵工学报, 2015, 36(6):1096-1103. |
Li Zhi-nong, Du Yi-guang, Xiao Yao-xian.Fault diagnosis method of rotor system with multi-crack based on nonlinear output frequency response function[J]. Acta Armamentarii, 2015, 36(6): 1096-1103. | |
20 | Zhang X T, Yang Y F, Shi M M, et al. An energy track method for early-stage rub-impact fault investigation of rotor system [J]. Journal of Sound and Vibration, 2022, 516: 116545. |
21 | Zhang X T, Yang Y F, Ma H, et al. A novel diagnosis indicator for rub-impact of rotor system via energy method [J]. Mechanical Systems and Signal Processing, 2023, 185: 109825. |
22 | Zhang X T, Yang Y F, Shi M M, et al. Novel energy identification method for shallow cracked rotor system [J]. Mechanical Systems and Signal Processing, 2023, 186: 109886. |
23 | Huh Y C, Chung T Y, Moon S J, et al. Damage detection in beams using vibratory power estimated from the measured accelerations [J]. Journal of Sound and Vibration, 2011, 330(15): 3645-3665. |
24 | Xiong Q, Guan H, Ma H, et al. Dynamic characteristic analysis of rotating blade with breathing crack [J]. Mechanical Systems and Signal Processing, 2023, 196: 110325. |
25 | Lang Z Q, Billings S A. Energy transfer properties of non-linear systems in the frequency domain [J]. International Journal of Control, 2005, 78(5): 354-362. |
26 | Liang H Y, Lu H H, Feng K P, et al. Application of the improved NOFRFs weighted contribution rate based on KL divergence to rotor rub-impact [J]. Nonlinear Dynamics, 2021, 104(4): 3937-3954. |
27 | 李津涛. 基于NOFRFs的转子系统碰摩故障诊断方法的研究 [D]. 沈阳: 东北大学, 2021. |
Li Jin-tao. Research on diagnosis methods for rub-impact fault of a rotor system based on nonlinear output frequency response functions[D]. Shenyang: Northeastern University, 2021. | |
28 | Liu Y, Zhao Y L, Li J T, et al. Application of weighted contribution rate of nonlinear output frequency response functions to rotor rub-impact [J]. Mechanical Systems and Signal Processing, 2020, 136: 106518. |
29 | 赵晨光. 含呼吸裂纹的旋转扭形叶片动力学特性研究 [D]. 沈阳: 东北大学, 2021. |
Zhao Chen-guang. Research on the dynamic characteristics of rotating blade with breathing crack [D]. Shenyang: Northeastern University, 2021. |
[1] | Yao-man ZHANG, Shuang-jin WU, Zhao-feng RAO. Temperature Field Analysis and Machining Modeling of Inconel 718 for Wire Electrical Discharge Machining [J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 88-96. |
[2] | Zhi-qiang WANG, Zhen-yu LEI. Effects of Surface Periodic Roughness on Contact Stick-Slip Behaviors [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 76-82. |
[3] | Chong SHEN, Qing-tian SU, You-sheng CHEN. Mechanical Properties and Reinforcement Method of Misaligned Thick Plate Cross Joints in Steel Bridge [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 729-737. |
[4] | MA Hui, YU Ming-yue, GAO Ang, ZHAO Chen-guang. Dynamic Modeling Method of Bolted Joint Interfaces Based on Nonlinear Transversely Isotropic Virtual Material [J]. Journal of Northeastern University(Natural Science), 2021, 42(8): 1111-1119. |
[5] | LI Ming, LIU Ming-rui, ZHOU Li-ming. Cell-Based Smoothed Finite Element Method for Elastic-Electro-Moisture Multi-physical Coupling Field [J]. Journal of Northeastern University Natural Science, 2020, 41(9): 1363-1368. |
[6] | LI Wu-jie, GUO Li-xin. Effect of Different Postures on Burst Fracture of Thoracolumbar Segment [J]. Journal of Northeastern University Natural Science, 2020, 41(4): 534-540. |
[7] | DENG Wen-juan, ZHANG Ying-li, DING Jia-nan, BA De-chun. CFD-based Performance Analysis of a Discharge Valve Plate in the Rolling Rotor Compressor [J]. Journal of Northeastern University Natural Science, 2020, 41(12): 1754-1759. |
[8] | FANG Shu-jun, WANG Tao, NIE Nian-cong, ZHANG Ling-rui. Analysis of Poor Crack Configuration Influence Based on ABAQUS Standard Extended Finite Element Method [J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1646-1653. |
[9] | GAO Feng, SUN Wei, GAO Jun-nan. Vibration Characteristics Study for the Hard Coating Blisk Using Finite Element Method [J]. Journal of Northeastern University Natural Science, 2019, 40(5): 688-693. |
[10] | HU Sheng, LYU Jiang-tao, SI Guang-yuan. Analysis and Modeling of Electro-osmosis Based on the Modified Poisson-Boltzmann Equation [J]. Journal of Northeastern University Natural Science, 2019, 40(3): 447-451. |
[11] | LIU Chang, ZHAO Chun-yu, HAN Yan-long, WEN Bang-chun. Calculation Method for Load Distribution of Ball Screw Nut Pairs [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1739-1743. |
[12] | LI Bing-qiang, MA Hui, HAO Yu-ming, XIE Fang-tao. A New Rotating Blade-Casing Rubbing Model Considering Flexibility of Casing [J]. Journal of Northeastern University Natural Science, 2018, 39(8): 1143-1148. |
[13] | LI Peng-fei, LIU Yu, GONG Ya-dong, LI Liang-liang. Iterative Finite Element Method for Predicting Deformations of Micro Thin Wall [J]. Journal of Northeastern University Natural Science, 2018, 39(4): 527-531. |
[14] | ZHOU Li-ming, REN Shu-hui, MENG Guang-wei, LI Rong-jia. ABAQUS User Subroutine Development for Energy Releasing Rate of the Functionally Graded Plate with Cracks [J]. Journal of Northeastern University Natural Science, 2017, 38(9): 1309-1314. |
[15] | MA Hui, WU Shuang, ZENG Jin, ZHANG Wen-sheng. Damping Characteristic Analysis of Cantilever Beam with Straight Crack [J]. Journal of Northeastern University Natural Science, 2017, 38(4): 546-550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||