[1] |
宋明明, 陈烜, 张天宇, 等. 冷却介质对不同碳含量合金钢淬火组织及性能的影响[J]. 材料热处理学报, 2021, 42(3): 104-111.
|
|
Song Ming-ming, Chen Xuan, Zhang Tian-yu, et al. Effect of cooling medium on quenching microstructure and mechanical properties of alloy steel with different carbon content[J]. Transactions of Materials and Heat Treatment, 2021, 42(3): 104-111.
|
[2] |
Wang J, Peng J, Liu L X, et al. Study on the influences of adding rare earth ce on the precipitation behaviors of TiN inclusions in 20CrMnTi[J]. Materials,2023, 16(16): 5598.
|
[3] |
Zhang X, Tang J Y, Zhang X R. An optimized hardness model for carburizing-quenching of low carbon alloy steel[J]. Journal of Central South University, 2017, 24(1): 9-16.
|
[4] |
Lu X G, Li Y S, Meng Z W, et al. Investigation of microstructures and properties of graphene reinforced 20CrMnTi materials[J]. Journal of Physics: Conference Series, 2022, 2383(1): 012112.
|
[5] |
任思学, 李景彬, 史亚盟, 等. 工艺参数对20CrMnTi基激光熔覆Ni60A-TiC涂层组织及耐磨性能的影响[J].中国激光, 2023,50(8):142-153.
|
|
Ren Si-xue, Li Jing-bin, Shi Ya-meng, et al. Effect of process parameters on microstructure and wear resistance of 20CrMnTi-based laser cladding Ni60A-TiC coating[J]. Chinese Journal of Lasers, 2023,50(8):142-153.
|
[6] |
Hong Y, Sun C, Xiu S C, et al. Strengthening surface generation mechanism of carburizing-assisted grinding[J]. Tribology International, 2023, 180: 108300.
|
[7] |
Zhang R, Yuan Q, Tang E, et al. Role of precipitates on the grain coarsening of 20CrMnTi gear steel during pseudo-carburizing[J]. Metals, 2023, 13(8): 1422.
|
[8] |
Xu T T, W S, Zhao C R, et al. Study on mechanism of improving wear and corrosion properties of 20CrMnTi ring gear surface by laser carburizing[J]. Materials Today Communications, 2022, 32: 104029.
|
[9] |
Hong Y, Sun C, Xiu S C, et al. Grinding residual stress optimization under the micro-carburizing effect[J]. Tribology International, 2023, 188: 108807.
|
[10] |
He Y, Xiao G J, Zhu S, et al. Surface formation in laser-assisted grinding high-strength alloys[J]. International Journal of Machine Tools and Manufacture, 2023, 186: 104002.
|
[11] |
Lee S J, Matlock D K, Van Tyne C J. Comparison of two finite element simulation codes used to model the carburizing of steel[J]. Computational Materials Science, 2013, 68: 47-54.
|
[12] |
Sun C, Hong Y, Xiu S C, et al. Surface strengthening mechanism of the active grinding carburization[J]. Tribology International, 2023, 185: 108569.
|
[13] |
Yang B J, Hattiangadi A, Li W Z, et al. Simulation of steel microstructure evolution during induction heating[J]. Materials Science and Engineering: A, 2010, 527(12): 2978-2984.
|
[14] |
Su B, Han Z Q, Liu B C, et al. Numerical simulation on austenitization of cast steel during heating process[J]. IOP Conference Series: Materials Science and Engineering, 2012, 33(1): 012080.
|
[15] |
Wen J, Tang J Y, Shao W, et al. Towards understanding subsurface characteristics in burn process of gear profile grinding[J]. Materials, 2023, 16(6): 2493.
|
[16] |
Xu J L, Li X X, Lu J, et al. An investigation into mechanics and tribology of SnAgCu and MoO3 containing in 20CrMnTi based composites[J]. Journal of Alloys and Compounds, 2020, 831: 154858.
|
[17] |
Kumar P, Chaudhary B, Jain N K, et al. Investigation on tribo-characteristics of electrochemical jet machined part manufactured by laser powder bed fusion[J]. Tribology International, 2023, 188: 108766.
|