Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (6): 122-130.DOI: 10.12068/j.issn.1005-3026.2025.20230340
• Resources & Civil Engineering • Previous Articles Next Articles
Shu-hong WANG, Hao-ran LI, Hong YIN, Fan GONG
Received:
2023-12-22
Online:
2025-06-15
Published:
2025-09-01
CLC Number:
Shu-hong WANG, Hao-ran LI, Hong YIN, Fan GONG. Multi-objective Optimization of Fiber Foam Concrete Based on Response Surface Analysis[J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 122-130.
性质参数 | 说明 |
---|---|
外观 | 黑色液体 |
稀释倍数 | 40 |
使用温度/℃ | 5~60 |
溶解性 | 用水稀释为均匀液体,静置24 h不分层、不沉底 |
Table 1 Foaming agent properties
性质参数 | 说明 |
---|---|
外观 | 黑色液体 |
稀释倍数 | 40 |
使用温度/℃ | 5~60 |
溶解性 | 用水稀释为均匀液体,静置24 h不分层、不沉底 |
纤维种类 | 密度 | 单丝直径 | 弹性模量 | 抗拉强度 |
---|---|---|---|---|
g·cm-3 | μm | GPa | MPa | |
BF | 2.63~2.65 | 7~15 | 91.0~110.0 | 3 000~4 800 |
PVA | 1.29 | 15.09 | 40.0 | 1 830 |
PP | 0.91 | 32.70 | 4.2 | 469 |
Table 2 Mechanical properties of fiber
纤维种类 | 密度 | 单丝直径 | 弹性模量 | 抗拉强度 |
---|---|---|---|---|
g·cm-3 | μm | GPa | MPa | |
BF | 2.63~2.65 | 7~15 | 91.0~110.0 | 3 000~4 800 |
PVA | 1.29 | 15.09 | 40.0 | 1 830 |
PP | 0.91 | 32.70 | 4.2 | 469 |
水平 | 因素 | ||
---|---|---|---|
纤维种类 | 纤维长度 | 纤维质量分数 | |
mm | % | ||
1 | BF | 3 | 0.1 |
2 | PVA | 6 | 0.2 |
3 | PP | 9 | 0.3 |
Table 3 Orthogonal test design
水平 | 因素 | ||
---|---|---|---|
纤维种类 | 纤维长度 | 纤维质量分数 | |
mm | % | ||
1 | BF | 3 | 0.1 |
2 | PVA | 6 | 0.2 |
3 | PP | 9 | 0.3 |
编号 | 纤维种类 | 纤维长度 | 纤维质量分数 | m/kg | 泡沫体积 | |||
---|---|---|---|---|---|---|---|---|
mm | % | 水泥 | 水 | 稳泡剂 | 纤维 | m3 | ||
1 | BF | 3 | 0.1 | 581.94 | 232.78 | 3.5 | 2.64 | 0.64 |
2 | BF | 6 | 0.2 | 580.56 | 232.22 | 3.5 | 5.28 | 0.64 |
3 | BF | 9 | 0.3 | 579.17 | 231.67 | 3.5 | 7.92 | 0.64 |
4 | PVA | 6 | 0.1 | 581.94 | 232.78 | 3.5 | 1.29 | 0.64 |
5 | PVA | 9 | 0.2 | 580.56 | 232.22 | 3.5 | 2.58 | 0.64 |
6 | PVA | 3 | 0.3 | 579.17 | 231.67 | 3.5 | 3.87 | 0.64 |
7 | PP | 9 | 0.1 | 581.94 | 232.78 | 3.5 | 0.91 | 0.64 |
8 | PP | 3 | 0.2 | 580.56 | 232.22 | 3.5 | 1.82 | 0.64 |
9 | PP | 6 | 0.3 | 579.17 | 231.67 | 3.5 | 2.73 | 0.64 |
Table 4 Test conditions and ratios
编号 | 纤维种类 | 纤维长度 | 纤维质量分数 | m/kg | 泡沫体积 | |||
---|---|---|---|---|---|---|---|---|
mm | % | 水泥 | 水 | 稳泡剂 | 纤维 | m3 | ||
1 | BF | 3 | 0.1 | 581.94 | 232.78 | 3.5 | 2.64 | 0.64 |
2 | BF | 6 | 0.2 | 580.56 | 232.22 | 3.5 | 5.28 | 0.64 |
3 | BF | 9 | 0.3 | 579.17 | 231.67 | 3.5 | 7.92 | 0.64 |
4 | PVA | 6 | 0.1 | 581.94 | 232.78 | 3.5 | 1.29 | 0.64 |
5 | PVA | 9 | 0.2 | 580.56 | 232.22 | 3.5 | 2.58 | 0.64 |
6 | PVA | 3 | 0.3 | 579.17 | 231.67 | 3.5 | 3.87 | 0.64 |
7 | PP | 9 | 0.1 | 581.94 | 232.78 | 3.5 | 0.91 | 0.64 |
8 | PP | 3 | 0.2 | 580.56 | 232.22 | 3.5 | 1.82 | 0.64 |
9 | PP | 6 | 0.3 | 579.17 | 231.67 | 3.5 | 2.73 | 0.64 |
序号 | 因素 | 试验结果 | ||||
---|---|---|---|---|---|---|
纤维种类 | 纤维长度 | 纤维质量分数 | 抗压强度 | 弹性模量 | 静态压缩能耗 | |
mm | % | MPa | MPa | J | ||
1 | BF | 3 | 0.1 | 4.79 | 499.98 | 40.2 |
2 | BF | 6 | 0.2 | 4.16 | 401.38 | 78.5 |
3 | BF | 9 | 0.3 | 2.65 | 343.46 | 113.8 |
4 | PVA | 6 | 0.1 | 5.12 | 502.00 | 38.0 |
5 | PVA | 9 | 0.2 | 4.64 | 418.26 | 71.9 |
6 | PVA | 3 | 0.3 | 3.22 | 387.00 | 116.4 |
7 | PP | 9 | 0.1 | 4.76 | 489.00 | 40.0 |
8 | PP | 3 | 0.2 | 3.98 | 459.00 | 66.7 |
9 | PP | 6 | 0.3 | 3.23 | 384.62 | 87.6 |
10 | PVA | 6 | 0.2 | 4.89 | 434.54 | 69.8 |
11 | PVA | 6 | 0.2 | 4.97 | 432.95 | 68.6 |
12 | PVA | 6 | 0.2 | 4.86 | 467.84 | 63.7 |
13 | PVA | 6 | 0.2 | 5.09 | 441.05 | 70.1 |
Table 5 Results of orthogonal test
序号 | 因素 | 试验结果 | ||||
---|---|---|---|---|---|---|
纤维种类 | 纤维长度 | 纤维质量分数 | 抗压强度 | 弹性模量 | 静态压缩能耗 | |
mm | % | MPa | MPa | J | ||
1 | BF | 3 | 0.1 | 4.79 | 499.98 | 40.2 |
2 | BF | 6 | 0.2 | 4.16 | 401.38 | 78.5 |
3 | BF | 9 | 0.3 | 2.65 | 343.46 | 113.8 |
4 | PVA | 6 | 0.1 | 5.12 | 502.00 | 38.0 |
5 | PVA | 9 | 0.2 | 4.64 | 418.26 | 71.9 |
6 | PVA | 3 | 0.3 | 3.22 | 387.00 | 116.4 |
7 | PP | 9 | 0.1 | 4.76 | 489.00 | 40.0 |
8 | PP | 3 | 0.2 | 3.98 | 459.00 | 66.7 |
9 | PP | 6 | 0.3 | 3.23 | 384.62 | 87.6 |
10 | PVA | 6 | 0.2 | 4.89 | 434.54 | 69.8 |
11 | PVA | 6 | 0.2 | 4.97 | 432.95 | 68.6 |
12 | PVA | 6 | 0.2 | 4.86 | 467.84 | 63.7 |
13 | PVA | 6 | 0.2 | 5.09 | 441.05 | 70.1 |
项目 | 平方和 | 自由度 | 平方差 | F值 | P值 | 是否显著 |
---|---|---|---|---|---|---|
回归模型Y1 | 8.080 0 | 9 | 0.898 0 | 85.05 | 0.001 9 | 显著 |
A(纤维种类) | 1.010 0 | 1 | 1.010 0 | 96.05 | 0.002 3 | 显著 |
B(纤维长度) | 0.010 1 | 1 | 0.010 1 | 0.96 | 0.400 1 | 不显著 |
C(纤维质量分数) | 0.108 4 | 1 | 0.108 4 | 10.27 | 0.049 2 | 显著 |
AB | 0.088 4 | 1 | 0.088 4 | 8.38 | 0.062 8 | 不显著 |
AC | 0.020 3 | 1 | 0.020 3 | 1.92 | 0.259 9 | 不显著 |
BC | 0.171 1 | 1 | 0.171 1 | 16.21 | 0.027 5 | 显著 |
A2 | 0.585 3 | 1 | 0.585 3 | 55.44 | 0.005 0 | 显著 |
B2 | 0.123 1 | 1 | 0.123 1 | 11.66 | 0.042 0 | 显著 |
C2 | 0.665 2 | 1 | 0.665 2 | 63.00 | 0.004 2 | 显著 |
绝对误差 | 0.031 7 | 3 | 0.000 0 | — | — | — |
总离差 | 8.110 0 | 12 | — | — | — | — |
Table 6 Variance analysis of compressive strength model
项目 | 平方和 | 自由度 | 平方差 | F值 | P值 | 是否显著 |
---|---|---|---|---|---|---|
回归模型Y1 | 8.080 0 | 9 | 0.898 0 | 85.05 | 0.001 9 | 显著 |
A(纤维种类) | 1.010 0 | 1 | 1.010 0 | 96.05 | 0.002 3 | 显著 |
B(纤维长度) | 0.010 1 | 1 | 0.010 1 | 0.96 | 0.400 1 | 不显著 |
C(纤维质量分数) | 0.108 4 | 1 | 0.108 4 | 10.27 | 0.049 2 | 显著 |
AB | 0.088 4 | 1 | 0.088 4 | 8.38 | 0.062 8 | 不显著 |
AC | 0.020 3 | 1 | 0.020 3 | 1.92 | 0.259 9 | 不显著 |
BC | 0.171 1 | 1 | 0.171 1 | 16.21 | 0.027 5 | 显著 |
A2 | 0.585 3 | 1 | 0.585 3 | 55.44 | 0.005 0 | 显著 |
B2 | 0.123 1 | 1 | 0.123 1 | 11.66 | 0.042 0 | 显著 |
C2 | 0.665 2 | 1 | 0.665 2 | 63.00 | 0.004 2 | 显著 |
绝对误差 | 0.031 7 | 3 | 0.000 0 | — | — | — |
总离差 | 8.110 0 | 12 | — | — | — | — |
项目 | 平方和 | 自由度 | 平方差 | F值 | P值 | 是否显著 |
---|---|---|---|---|---|---|
回归模型Y2 | 26 347.35 | 3 | 8 782.45 | 49.25 | <0.000 1 | 显著 |
A(纤维种类) | 23 550.14 | 1 | 23 550.14 | 132.06 | <0.000 1 | 显著 |
B(纤维长度) | 1 512.41 | 1 | 1 512.41 | 8.48 | 0.017 2 | 显著 |
C(纤维质量分数) | 1 284.81 | 1 | 1 284.81 | 7.20 | 0.025 0 | 显著 |
残差 | 1 604.93 | 9 | 178.33 | — | — | — |
失拟项 | 816.33 | 6 | 136.05 | 0.52 | — | 不显著 |
绝对误差 | 788.16 | 3 | 262.87 | — | — | — |
总离差 | 27 952.29 | 12 | — | — | — | — |
Table 7 Variance analysis of elastic modulus model
项目 | 平方和 | 自由度 | 平方差 | F值 | P值 | 是否显著 |
---|---|---|---|---|---|---|
回归模型Y2 | 26 347.35 | 3 | 8 782.45 | 49.25 | <0.000 1 | 显著 |
A(纤维种类) | 23 550.14 | 1 | 23 550.14 | 132.06 | <0.000 1 | 显著 |
B(纤维长度) | 1 512.41 | 1 | 1 512.41 | 8.48 | 0.017 2 | 显著 |
C(纤维质量分数) | 1 284.81 | 1 | 1 284.81 | 7.20 | 0.025 0 | 显著 |
残差 | 1 604.93 | 9 | 178.33 | — | — | — |
失拟项 | 816.33 | 6 | 136.05 | 0.52 | — | 不显著 |
绝对误差 | 788.16 | 3 | 262.87 | — | — | — |
总离差 | 27 952.29 | 12 | — | — | — | — |
回归模型 | 标准差 | 均值 | 相关系数R2 | 调整系数Ra2 | 预测系数Rp2 | 变异系数 | 信噪比 |
---|---|---|---|---|---|---|---|
Y1 | 0.102 8 | 4.34 | 0.996 1 | 0.984 4 | 趋近1 | 2.37 | 24.407 6 |
Y2 | 13.350 0 | 435.47 | 0.942 6 | 0.923 4 | 0.910 8 | 3.07 | 21.202 2 |
Table 8 Reliability analysis results
回归模型 | 标准差 | 均值 | 相关系数R2 | 调整系数Ra2 | 预测系数Rp2 | 变异系数 | 信噪比 |
---|---|---|---|---|---|---|---|
Y1 | 0.102 8 | 4.34 | 0.996 1 | 0.984 4 | 趋近1 | 2.37 | 24.407 6 |
Y2 | 13.350 0 | 435.47 | 0.942 6 | 0.923 4 | 0.910 8 | 3.07 | 21.202 2 |
编号 | 纤维种类 | 纤维质量 分数/% | 纤维 长度/mm | 抗压强度 | 弹性模量 | ||||
---|---|---|---|---|---|---|---|---|---|
预测值/MPa | 实测值/MPa | E1/% | 预测值/MPa | 实测值/MPa | E2/% | ||||
Ⅰ | BF | 23 | 5 | 4.09 | 3.98 | 2.8 | 409.05 | 416.8 | 1.9 |
Ⅱ | PVA | 25 | 8 | 4.40 | 4.27 | 3.0 | 391.95 | 407.6 | 3.8 |
Ⅲ | PP | 25 | 9 | 4.36 | 4.24 | 2.8 | 401.93 | 387.1 | 3.8 |
Table 9 Optimal design results verification of response surface
编号 | 纤维种类 | 纤维质量 分数/% | 纤维 长度/mm | 抗压强度 | 弹性模量 | ||||
---|---|---|---|---|---|---|---|---|---|
预测值/MPa | 实测值/MPa | E1/% | 预测值/MPa | 实测值/MPa | E2/% | ||||
Ⅰ | BF | 23 | 5 | 4.09 | 3.98 | 2.8 | 409.05 | 416.8 | 1.9 |
Ⅱ | PVA | 25 | 8 | 4.40 | 4.27 | 3.0 | 391.95 | 407.6 | 3.8 |
Ⅲ | PP | 25 | 9 | 4.36 | 4.24 | 2.8 | 401.93 | 387.1 | 3.8 |
[1] | 田洪铭, 陈卫忠, 谭贤君, 等. 高地应力软岩隧道合理支护方案研究[J]. 岩石力学与工程学报, 2011, 30(11): 2285-2292. |
Tian Hong-ming, Chen Wei-zhong, Tan Xian-jun, et al. Study of reasonable support scheme for soft rock tunnel in high geostress zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2285-2292. | |
[2] | 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021,49(2): 398-410. |
Song Qiang, Zhang Peng, Bao Jiu-wen, et al. Research progress and application of foam concrete [J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410. | |
[3] | Wu G J, Chen W Z, Tan X J, et al. Performance of new type of foamed concrete in supporting tunnel in squeezing rock[J]. International Journal of Geomechanics, 2020, 20(2): 04019173. |
[4] | Calis G, Yildizel S A, Erzin S, et al. Evaluation and optimization of foam concrete containing ground calcium carbonate and glass fibre (experimental and modelling study) [J]. Case Studies in Construction Materials, 2021,15: e00625. |
[5] | Yavuz B O, Kaplan G, Gencel O, et al. Physico- mechanical, durability and thermal properties of basalt fiber reinforced foamed concrete containing waste marble powder and slag [J]. Construction and Building Materials,2021,288:123-128. |
[6] | Sayadi A A, Tapia J V, Neitzert T R, et al. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete[J]. Construction and Building Materials, 2016, 112: 716-724. |
[7] | Gencel O, Yavuz B O, Kaplan G,et al. Characteristics of hemp fibre reinforced foam concretes with fly ash and Taguchi optimization[J]. Construction and Building Materials,2021,294:123607. |
[8] | Castillo-Lara J F, Flores-Johnson E A, Valadez-Gonzalez A,et al. Mechanical properties of natural fiber reinforced foamed concrete[J]. Materials, 2020, 13(14): 3060. |
[9] | Madhwani H, Sathyan D, Mini K M. Study on durability and hardened state properties of sugarcane bagasse fiber reinforced foam concrete [J]. Materials Today: Proceedings, 2021, 46: 4782-4787. |
[10] | Hou L, Li J, Lu Z Y, et al. Influence of foaming agent on cement and foam concrete[J]. Construction and Building Materials, 2021, 280: 122399. |
[11] | Alyamac K E, Ghagari E, Ince R. Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method[J]. Journal of Cleaner Production, 2017, 144: 192-202. |
[12] | 吕官记, 季韬. 基于响应面法的三元聚合物砂浆力学性能 [J]. 建筑材料学报, 2021, 24(5):970-976. |
Guan-ji Lyu, Ji Tao. Mechanical properties of ternary polymer mortar based on response surface method [J]. Journal of Building Materials, 2021, 24 (5): 970-976. | |
[13] | 黄炜, 郭余婷, 葛培, 等. 基于响应面法的聚丙烯纤维再生砖骨料混凝土配合比优化 [J]. 中南大学学报(自然科学版), 2022, 53(7): 2709-2718. |
Huang Wei, Guo Yu-ting, Ge Pei, et al. Mixture ratio optimization of polypropylene fiber recycled brick aggregate concrete based on response surface methodology [J]. Journal of Central South University (Science and Technology), 2022, 53 (7): 2709-2718. | |
[14] | Zhang Q Y, Feng X J, Chen X D, et al. Mix design for recycled aggregate pervious concrete based on response surface methodology[J]. Construction and Building Materials, 2020, 259: 119776. |
[15] | 中华人民共和国住房和城乡建设部. 泡沫混凝土: [S]. 北京:中国标准出版社, 2011. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Foamed concrete: [S]. Beijing: Standards Press of China, 2011. | |
[16] | 王静文, 王伟.玄武岩纤维增强泡沫混凝土响应面多目标优化 [J]. 材料导报, 2019, 33(24): 4092-4097. |
Wang Jing-wen, Wang Wei. Response surface based multi-objective optimization of basalt fiber reinforced foamed concrete [J]. Materials Reports, 2019, 33(24): 4092-4097. | |
[17] | Cho T. Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method[J]. Construction and Building Materials,2007,21(12):2031‑2040. |
[18] | Bayramov F, Tasdemir C, Tasdemir M A. Optimization of steel fiber reinforced concretes by means of statistical response surface method[J]. Cement and Concrete Composites, 2004, 26(6): 665-675. |
[19] | Tang R, Wei Q S, Zhang K, et al. Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete [J]. Journal of Building Engineering, 2022, 57: 104948. |
[20] | 陈峰宾, 许斌焦, 华喆, 等. 玄武岩纤维混凝土纤维分布及孔隙结构表征 [J]. 中国矿业大学学报,2021, 50(2): 273-280. |
Chen Feng-bin, Xu Bin-jiao, Hua Zhe, et al. Fiber distribution and pore structure characterization of basalt fiber reinforced concrete [J]. Journal of China University of Mining and Technology, 2021, 50(2): 273-280. | |
[21] | Shang X Y, Yang J W, Wang S M, et al. Fractal analysis of 2D and 3D mesocracks in recycled aggregate concrete using X-ray computed tomography images[J]. Journal of Cleaner Production, 2021, 304: 127083. |
[1] | Yang-jun WU, Zhen-ping LI, Hong-liang YAO, Sheng-dong HAN. Modeling and Optimization Design of Vehicle Powertrain System Considering Effect of Auxiliary Components [J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 43-51. |
[2] | Ya-jun WU, Hai-qiang ZHANG, Jia-cheng ZHAN, Jia-cheng LUO. Study on Replacement of Fluidized Solidified Soil with Sand Protective Cushion on Vacuum Combined Surcharge Preloading Membranes [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1494-1503. |
[3] | LIU Xiao-xi, JIANG Hui-yan, LUO Min. Multi-constraint Optimal Puncture Path Planning Algorithm for Liver Cancer Ablation [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 922-930. |
[4] | JIN Chang-yu, ZHANG Jia-yao, YU Zhong-jie, WANG Qiang. Reliability Analysis of Surface Subsidence Based on Response Surface Methodology [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1734-1742. |
[5] | LI Zhan-shan, SONG Zhi-yang, HUA Yun-qiao. A Multi-modal Multi-objective Optimization Algorithm Based on Adaptive Search [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1408-1415. |
[6] | ZHANG Rui-you, WANG Chao-hui, CHEN Yong-qiang. Lyapunov Method for Solving Nonlinear Programming Problems Based on Control Ideas [J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1217-1226. |
[7] | XIE Yuan-hua, YANG Dai-en, BAI Bing, ZHU Tong. Study on Excess Sludge Disintegration by High Pressure Jet Impingement Stream [J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1790-1796. |
[8] | LI Bo, WANG Zi-sheng, LIANG Chao, WANG Xue-wen. Modification of Discrete Element Contact Parameters of Coal Bulks Based on Rotary Transport Test [J]. Journal of Northeastern University(Natural Science), 2021, 42(10): 1435-1443. |
[9] | MA Lian-jie, ZUO Yu-chen, ZHOU Yun-guang, FU Hai-ling. Multi-objective Optimization of Tool Geometry Parameters in Turning Zirconia Ceramics [J]. Journal of Northeastern University Natural Science, 2020, 41(8): 1129-1134. |
[10] | QI Xi-jing, TANG Liang, KANG Wei-xin, QIN Jiao-jiao. Multi-objective Decision-Making Method for Bridge Deck Maintenance Scheme for Highway [J]. Journal of Northeastern University Natural Science, 2020, 41(7): 1033-1040. |
[11] | GONG Ya-dong, ZHANG Wei-jian, CAI Ming, ZHOU Xian-xin. Experimental Study on the Grinding Metamorphic Layer of Nickel-based Single Crystal Superalloy [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 846-851. |
[12] | TIAN Hui-xin, WANG Di, SHUAI Min-wei, LI Kun. Optimization of High-Speed Train Operation Plan for OD Passenger Flow [J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1535-1542. |
[13] | SONG Hang, WANG Ya-li, LIU Guo-qi, ZHANG Bin. Web Service Composition Optimization Method Based on Improved Multi-objective Artificial Bee Colony Algorithm [J]. Journal of Northeastern University Natural Science, 2019, 40(6): 777-782. |
[14] | MA Xiao-gang, CHEN Liang-yu, LI Yang. Optimization of Longevity Technology for Bosh Copper Cooling Stave with Shaped Tubes Based on Response Surface Method [J]. Journal of Northeastern University Natural Science, 2019, 40(5): 710-715. |
[15] | FAN Li , XIE Li-yang, ZHANG Na. Fatigue Robustness and Lightweight Design of Driving Axle Housing for Heavy Truck [J]. Journal of Northeastern University Natural Science, 2019, 40(3): 365-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||