Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (6): 8-15.DOI: 10.12068/j.issn.1005-3026.2025.20230341
• Information & Control • Previous Articles Next Articles
Li-zhen LI, Shu-hua MA, Ze-xu GUO, Xiao-chen CHE
Received:
2023-12-25
Online:
2025-06-15
Published:
2025-09-01
CLC Number:
Li-zhen LI, Shu-hua MA, Ze-xu GUO, Xiao-chen CHE. X-ray Image Prohibited Item Detection Algorithm Based on X-ray-RTDETR[J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 8-15.
模型 | 基准模型及其改进 | AP50 / % | AP / % | 参数量× 10-6 | nFLOP×10-9 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
简单 子集 | 困难 子集 | 隐藏 子集 | 全部 | 简单 子集 | 困难 子集 | 隐藏 子集 | 全部 | ||||
A | RT-DETR-R18 | 86.2 | 86.9 | 61.3 | 78.1 | 76.8 | 72.7 | 48.9 | 66.1 | 20.09 | 29.03 |
B | A+(R18→CSPRepResNet) | 89.2 | 89.0 | 73.8 | 84.0 | 80.5 | 75.1 | 60.6 | 72.1 | 18.33 | 25.60 |
C | B+(ESE→EMA) | 90.0 | 90.2 | 75.6 | 85.3 | 81.1 | 75.9 | 61.2 | 72.8 | 17.95 | 25.76 |
D | C+(Conv(1×1)→SimSPPF) | 91.0 | 90.5 | 76.6 | 86.0 | 82.4 | 76.5 | 62.6 | 73.8 | 18.69 | 26.79 |
E | D+(MHSA→SoftPool) | 91.4 | 91.2 | 77.3 | 86.6 | 82.9 | 77.4 | 63.4 | 74.6 | 18.42 | 26.79 |
Table 1 Results of ablation experiment
模型 | 基准模型及其改进 | AP50 / % | AP / % | 参数量× 10-6 | nFLOP×10-9 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
简单 子集 | 困难 子集 | 隐藏 子集 | 全部 | 简单 子集 | 困难 子集 | 隐藏 子集 | 全部 | ||||
A | RT-DETR-R18 | 86.2 | 86.9 | 61.3 | 78.1 | 76.8 | 72.7 | 48.9 | 66.1 | 20.09 | 29.03 |
B | A+(R18→CSPRepResNet) | 89.2 | 89.0 | 73.8 | 84.0 | 80.5 | 75.1 | 60.6 | 72.1 | 18.33 | 25.60 |
C | B+(ESE→EMA) | 90.0 | 90.2 | 75.6 | 85.3 | 81.1 | 75.9 | 61.2 | 72.8 | 17.95 | 25.76 |
D | C+(Conv(1×1)→SimSPPF) | 91.0 | 90.5 | 76.6 | 86.0 | 82.4 | 76.5 | 62.6 | 73.8 | 18.69 | 26.79 |
E | D+(MHSA→SoftPool) | 91.4 | 91.2 | 77.3 | 86.6 | 82.9 | 77.4 | 63.4 | 74.6 | 18.42 | 26.79 |
模型 | AP50/% | AP/% | 参数量×10-6 | nFLOP×10-9 | 推理速度 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
简单 子集 | 困难 子集 | 隐藏 子集 | 全部 | 简单 子集 | 困难 子集 | 隐藏 子集 | 全部 | ||||
帧·s-1 | |||||||||||
YOLOv5-m | 83.4 | 86.0 | 61.4 | 76.9 | 69.2 | 64.8 | 44.5 | 59.5 | 20.92 | 27.15 | 54.95 |
YOLOv7-l | 85.3 | 87.6 | 72.6 | 81.8 | 75.8 | 71.2 | 57.6 | 68.2 | 36.54 | 59.13 | 58.14 |
YOLOv8-m | 88.0 | 88.1 | 73.7 | 83.3 | 79.8 | 75.8 | 61.7 | 72.4 | 25.85 | 44.44 | 59.17 |
PP-YOLOE-Plus-m | 90.0 | 89.1 | 70.7 | 83.3 | 81.0 | 75.4 | 57.8 | 71.4 | 23.52 | 27.83 | 56.18 |
Gold-YOLO-m | 87.2 | 89.6 | 72.2 | 83.0 | 77.3 | 73.5 | 57.1 | 69.3 | 41.28 | 49.12 | 79.36 |
YOLOv6-m 3.0 | 90.1 | 90.8 | 75.2 | 85.4 | 81.0 | 76.7 | 61.8 | 73.2 | 34.81 | 48.18 | 90.09 |
X-ray-RTDETR | 91.4 | 91.2 | 77.3 | 86.6 | 82.9 | 77.4 | 63.4 | 74.6 | 18.42 | 26.79 | 85.47 |
Table 2 Comparison of experimental results with other advanced detection algorithms
模型 | AP50/% | AP/% | 参数量×10-6 | nFLOP×10-9 | 推理速度 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
简单 子集 | 困难 子集 | 隐藏 子集 | 全部 | 简单 子集 | 困难 子集 | 隐藏 子集 | 全部 | ||||
帧·s-1 | |||||||||||
YOLOv5-m | 83.4 | 86.0 | 61.4 | 76.9 | 69.2 | 64.8 | 44.5 | 59.5 | 20.92 | 27.15 | 54.95 |
YOLOv7-l | 85.3 | 87.6 | 72.6 | 81.8 | 75.8 | 71.2 | 57.6 | 68.2 | 36.54 | 59.13 | 58.14 |
YOLOv8-m | 88.0 | 88.1 | 73.7 | 83.3 | 79.8 | 75.8 | 61.7 | 72.4 | 25.85 | 44.44 | 59.17 |
PP-YOLOE-Plus-m | 90.0 | 89.1 | 70.7 | 83.3 | 81.0 | 75.4 | 57.8 | 71.4 | 23.52 | 27.83 | 56.18 |
Gold-YOLO-m | 87.2 | 89.6 | 72.2 | 83.0 | 77.3 | 73.5 | 57.1 | 69.3 | 41.28 | 49.12 | 79.36 |
YOLOv6-m 3.0 | 90.1 | 90.8 | 75.2 | 85.4 | 81.0 | 76.7 | 61.8 | 73.2 | 34.81 | 48.18 | 90.09 |
X-ray-RTDETR | 91.4 | 91.2 | 77.3 | 86.6 | 82.9 | 77.4 | 63.4 | 74.6 | 18.42 | 26.79 | 85.47 |
[1] | Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C] // 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587. |
[2] | Girshick R. Fast R-CNN[C] // 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448. |
[3] | Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
[4] | He K M, Gkioxari G, Dollár P, et al. Mask R-CNN[C] // 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988. |
[5] | Gaus Y F A, Bhowmik N, Breckon T P. On the use of deep learning for the detection of firearms in X-ray baggage security imagery[C] // 2019 IEEE International Symposium on Technologies for Homeland Security(HST). Woburn: IEEE, 2019: 1-7. |
[6] | Ma C J, Zhuo L, Li J F, et al. Prohibited object detection in X-ray images with dynamic deformable convolution and adaptive IoU[C] // 2022 IEEE International Conference on Image Processing(ICIP). Bordeaux: IEEE, 2022: 3001-3005. |
[7] | Liao H Y, Huang B, Gao H X. Feature-aware prohibited items detection for X-ray images[C] // 2023 IEEE International Conference on Image Processing(ICIP). Kuala Lumpur: IEEE, 2023: 1040-1044. |
[8] | Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C] // 2016 European Conference on Computer Vision (ECCV). Berlin: Springer, 2016: 21-37. |
[9] | Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2023-10-19]. . |
[10] | Bochkovskiy A, Wang C Y, Liao H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23) [2023-10-19]. . |
[11] | Li C Y, Li L L, Jiang H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07) [2023-10-19]. . |
[12] | Li C Y, Li L L, Geng Y F, et al. YOLOv6 v3.0: a full-scale reloading[EB/OL]. (2023-01-13) [2023-10-19]. . |
[13] | Wang C Y, Bochkovskiy A, Liao H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] // 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver: IEEE, 2023: 7464-7475. |
[14] | Wei Y J, Dai C, Chen M S, et al. Prohibited items detection in X-ray images in YOLO network[C] // 2021 26th International Conference on Automation and Computing(ICAC). Portsmouth: IEEE, 2021: 1-6. |
[15] | Wang Z S, Zhang H Y, Lin Z B, et al. Prohibited items detection in baggage security based on improved YOLOv5[C] // 2022 IEEE 2nd International Conference on Software Engineering and Artificial Intelligence(SEAI). Xiamen, 2022: 20-25. |
[16] | Liu W, Sun D G, Wang Y, et al. ABTD-Net: autonomous baggage threat detection networks for X-ray images[C] // 2023 IEEE International Conference on Multimedia and Expo(ICME). Brisbane: IEEE, 2023: 1229-1234. |
[17] | Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with Transformers[C] // 2020 European Conference on Computer Vision(ECCV). Cham: Springer, 2020: 213-229. |
[18] | Zhu X Z, Su W J, Lu L W, et al. Deformable DETR: deformable Transformers for end-to-end object detection[EB/OL]. (2021-03-18) [2023-10-19]. . |
[19] | Meng D P, Chen X K, Fan Z J, et al. Conditional DETR for fast training convergence[C] // 2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2021: 3651-3660. |
[20] | Li F, Zhang H, Liu S L, et al. DN-DETR: accelerate DETR training by introducing query denoising[C] // 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans: IEEE, 2022: 13609-13617. |
[21] | Zhang H, Li F, Liu S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[C] // The 11th International Conference on Learning Representations. Kigali, 2023: 1-19. |
[22] | Zhao Y A, Lyu W Y, Xu S L, et al. DETRs beat YOLOs on real-time object detection[C] // 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Seattle: IEEE, 2024: 16965-16974. |
[23] | Ouyang D L, He S, Zhang G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C] // 2023 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). Rhodes Island, Greece: IEEE, 2023: 1-5. |
[24] | Xu S L, Wang X X, Lyu W Y, et al. PP-YOLOE: an evolved version of YOLO[EB/OL]. (2022-12-12) [2023-10-19]. . |
[25] | He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. |
[26] | Yu W H, Luo M, Zhou P, et al. MetaFormer is actually what you need for vision[C] // 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans: IEEE, 2022: 10809-10819. |
[27] | Stergiou A, Poppe R, Kalliatakis G. Refining activation downsampling with SoftPool[C] // 2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2021: 10337-10346. |
[28] | Wang B Y, Zhang L B, Wen L Y, et al. Towards real-world prohibited item detection: a large-scale X-ray benchmark[C] // 2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal: IEEE, 2021: 5392-5401. |
[1] | Hong GUAN, Qian XIONG, Hui MA, Wei-wei WANG. Fault Feature Extraction and Analysis of Rotating Blade Cracks [J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 60-68. |
[2] | Zhi WANG, Kun WANG, Meng-qing WANG. Super-resolution Reconstruction of Remote Sensing Image Based on Transformer of Multi-scale Feature Fusion [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1178-1184. |
[3] | Xiao-peng SHA, Jia-qi CAO, Wen-jing LI, Ye QIN. Three-Dimensional Reconstruction Method of Monocular Video Image Sequences [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1680-1687. |
[4] | Peng SHAN, Lin ZHANG, Hong-ming XIAO, Yu-liang ZHAO. CT Diagnosis Method for Coronavirus Pneumonia with Integrated Multi-scale Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1673-1679. |
[5] | LI Shou-tao, QU Ru-yi, ZHANG Yu, YU Ding-li. Freezing of Gait Recognition Method Based on Variational Mode Decomposition [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1543-1548. |
[6] | LIU Yang, YAN Dong-mei, MENG Fan-wei. Improved Two-Branch Person Re-identification Algorithm Based on Transformer [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 26-32. |
[7] | WANG Na, LI Yang, PENG Kun. Method of Actuator Fault Diagnosis via Multiple Angles Feature Extraction [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1240-1249. |
[8] | YU Zhe-zhou, LIU Yan, LIU Yuan-ning. Improved Iris Locating Algorithm Based on YOLOV3 [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 496-501. |
[9] | YAN Kang, HUANG Xun-jiang, ZHANG Qiang, WANG Deng. Identification of Product Innovation Features Based on At-LSTM [J]. Journal of Northeastern University(Natural Science), 2022, 43(10): 1506-1512. |
[10] | REN Zhao-hui, YU Tian-zhuang, DING Dong, ZHOU Shi-hua. Fault Diagnosis Method of Rolling Bearing Based on VMD-DBN [J]. Journal of Northeastern University(Natural Science), 2021, 42(8): 1105-1110. |
[11] | HAN Peng, GUO Tian, WANG Jin-kuan, SHI Ze-wei. PV Power Forecasting with Univariate Input Based on mRMR-ESN [J]. Journal of Northeastern University(Natural Science), 2021, 42(2): 174-179. |
[12] | ZHAO Qi-hui, LI Da-peng, GAO Tian-han, WEN Ying-you. A Charge Prediction Method Based on Graph Attention Network: CP-GAT [J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1681-1687. |
[13] | HOU Yan-bin, CHEN Bing-jun, GAO Xian-wen. Fault Diagnosis of Sucker Rod Pumping Wells Based on GM-ELM [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1673-1678. |
[14] | LIU Chang-fu, ZHU Li-da, QIU Jian, LI Ming. Chatter Feature Extraction Method in Variable Cutting Depth Flank Milling Based on VMD and FFT [J]. Journal of Northeastern University Natural Science, 2018, 39(8): 1153-1157. |
[15] | HUANG Lu, WANG Hong. EEG Feature Extraction Based on Constrained ICA [J]. Journal of Northeastern University Natural Science, 2014, 35(3): 419-423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||