
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (10): 104-112.DOI: 10.12068/j.issn.1005-3026.2025.20240013
• Materials & Metallurgy • Previous Articles
Shi-jie JIANG1,2, Fei WANG1, Shu-guang LI1, Zi-zhao XU1
Received:2024-01-12
Online:2025-10-15
Published:2026-01-13
CLC Number:
Shi-jie JIANG, Fei WANG, Shu-guang LI, Zi-zhao XU. Theoretical and Experimental Research on Dimensional Shrinkage of MFFF 17-4PH Products[J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 104-112.
| C | O | Cr | Fe | Ni | Cu |
|---|---|---|---|---|---|
| 31.39 | 7.48 | 11.41 | 45.47 | 2.28 | 1.97 |
Table 1 Chemical composition of BASF 17-4PH
| C | O | Cr | Fe | Ni | Cu |
|---|---|---|---|---|---|
| 31.39 | 7.48 | 11.41 | 45.47 | 2.28 | 1.97 |
| 参数 | 数值 |
|---|---|
| 喷嘴直径/mm | 0.4 |
| 挤出宽度/mm | 0.48 |
| 喷嘴温度/℃ | 240 |
| 成型速度/(mm∙s-1) | 15 |
| 层高/mm | 0.12 |
| 重叠/% | 15 |
| 填充率/% | 100 |
| 床温/℃ | 90 |
Table 2 Main process parameters setting
| 参数 | 数值 |
|---|---|
| 喷嘴直径/mm | 0.4 |
| 挤出宽度/mm | 0.48 |
| 喷嘴温度/℃ | 240 |
| 成型速度/(mm∙s-1) | 15 |
| 层高/mm | 0.12 |
| 重叠/% | 15 |
| 填充率/% | 100 |
| 床温/℃ | 90 |
| 过程 | 腔体温度 | 进酸温度 | 尾气温度 | 用气流量 | 风扇转速 | 进酸量 | 时间 |
|---|---|---|---|---|---|---|---|
| ℃ | ℃ | ℃ | cm3·min-1 | r∙min-1 | mL∙min-1 | min | |
| 加热 | 105 | 150 | 145 | 3 000 | 1 000 | 0 | 45 |
| 前冲洗 | 105 | 150 | 145 | 3 000 | 1 000 | 0 | 30 |
| 脱脂 | 105 | 150 | 145 | 3 000 | 1 000 | 0.5 | 600 |
| 后冲洗 | 120 | 150 | 145 | 3 000 | 1 000 | 0 | 90 |
Table 3 Catalytic debinding parameters setting
| 过程 | 腔体温度 | 进酸温度 | 尾气温度 | 用气流量 | 风扇转速 | 进酸量 | 时间 |
|---|---|---|---|---|---|---|---|
| ℃ | ℃ | ℃ | cm3·min-1 | r∙min-1 | mL∙min-1 | min | |
| 加热 | 105 | 150 | 145 | 3 000 | 1 000 | 0 | 45 |
| 前冲洗 | 105 | 150 | 145 | 3 000 | 1 000 | 0 | 30 |
| 脱脂 | 105 | 150 | 145 | 3 000 | 1 000 | 0.5 | 600 |
| 后冲洗 | 120 | 150 | 145 | 3 000 | 1 000 | 0 | 90 |
编 号 | 温度 | 时间 | 工艺类型 | 进气量 | 气体 |
|---|---|---|---|---|---|
| ℃ | min | cm3·min-1 | |||
| 1 | 600 | 300 | 负压脱脂 | 2 000 | Ar |
| 2 | 600 | 60 | 负压脱脂 | 2 000 | Ar |
| 3 | 1 100 | 200 | 真空内烧 | 0 | Ar |
| 4 | 1 100 | 60 | 真空内烧 | 0 | Ar |
| 5 | 1 300 | 120 | 分压烧结 | 2 500 | Ar |
| 6 | 80 | 300 | 冷却 | 500 | Ar |
Table 4 Thermal debinding and sintering parameters
编 号 | 温度 | 时间 | 工艺类型 | 进气量 | 气体 |
|---|---|---|---|---|---|
| ℃ | min | cm3·min-1 | |||
| 1 | 600 | 300 | 负压脱脂 | 2 000 | Ar |
| 2 | 600 | 60 | 负压脱脂 | 2 000 | Ar |
| 3 | 1 100 | 200 | 真空内烧 | 0 | Ar |
| 4 | 1 100 | 60 | 真空内烧 | 0 | Ar |
| 5 | 1 300 | 120 | 分压烧结 | 2 500 | Ar |
| 6 | 80 | 300 | 冷却 | 500 | Ar |
| 样件 | 生坯样件尺寸/mm | 烧结样件尺寸/mm | 实验收缩率/% | 理论 收缩率/% | 误差/% | ||||
|---|---|---|---|---|---|---|---|---|---|
x 方向 | y 方向 | x 方向 | y 方向 | x 方向 | y 方向 | x 方向 | y 方向 | ||
| S1-i | 15.02 | 15.12 | 12.52 | 12.37 | 16.64 | 18.19 | 17.25 | 3.51 | 5.44 |
| S2-i | 15.03 | 15.05 | 12.62 | 12.31 | 16.03 | 18.21 | 7.05 | 5.54 | |
| S3-i | 15.08 | 15.07 | 12.54 | 12.44 | 16.84 | 17.45 | 2.36 | 1.17 | |
| S4-i | 15.03 | 15.13 | 12.56 | 12.32 | 16.43 | 18.57 | 4.73 | 7.67 | |
| S5-i | 15.04 | 15.08 | 12.7 | 12.36 | 15.56 | 18.04 | 9.81 | 4.56 | |
Table 5 Theoretical and experimental results of dimensional shrinkage rate in x, y directions
| 样件 | 生坯样件尺寸/mm | 烧结样件尺寸/mm | 实验收缩率/% | 理论 收缩率/% | 误差/% | ||||
|---|---|---|---|---|---|---|---|---|---|
x 方向 | y 方向 | x 方向 | y 方向 | x 方向 | y 方向 | x 方向 | y 方向 | ||
| S1-i | 15.02 | 15.12 | 12.52 | 12.37 | 16.64 | 18.19 | 17.25 | 3.51 | 5.44 |
| S2-i | 15.03 | 15.05 | 12.62 | 12.31 | 16.03 | 18.21 | 7.05 | 5.54 | |
| S3-i | 15.08 | 15.07 | 12.54 | 12.44 | 16.84 | 17.45 | 2.36 | 1.17 | |
| S4-i | 15.03 | 15.13 | 12.56 | 12.32 | 16.43 | 18.57 | 4.73 | 7.67 | |
| S5-i | 15.04 | 15.08 | 12.7 | 12.36 | 15.56 | 18.04 | 9.81 | 4.56 | |
样件 (i=5) | 生坯样件 | 烧结样件 | 实验 收缩率/% | 理论 收缩率/% | 误差/% |
|---|---|---|---|---|---|
| S1-i | 4.06 | 3.25 | 19.95 | 18.28 | 9.14 |
| S2-i | 4.12 | 3.28 | 20.39 | 11.53 | |
| S3-i | 4.05 | 3.23 | 20.25 | 10.76 | |
| S4-i | 4.11 | 3.31 | 19.46 | 6.48 | |
| S5-i | 4.09 | 3.29 | 19.56 | 7.00 |
Table 6 Theoretical and experimental results of dimensional shrinkage rate in z direction
样件 (i=5) | 生坯样件 | 烧结样件 | 实验 收缩率/% | 理论 收缩率/% | 误差/% |
|---|---|---|---|---|---|
| S1-i | 4.06 | 3.25 | 19.95 | 18.28 | 9.14 |
| S2-i | 4.12 | 3.28 | 20.39 | 11.53 | |
| S3-i | 4.05 | 3.23 | 20.25 | 10.76 | |
| S4-i | 4.11 | 3.31 | 19.46 | 6.48 | |
| S5-i | 4.09 | 3.29 | 19.56 | 7.00 |
| 参数 | 最小值X1 | 默认值 | 最大值X2 |
|---|---|---|---|
| 烧结升温速率/(℃∙min-1) | 1 | 2 | 4 |
| 最高温度保持时间/h | 1 | 2 | 3 |
| 生坯样件表观密度/(g∙cm-3) | 2.9 | 3.9 | 4.9 |
Table 7 Sensitivity test parameters setting
| 参数 | 最小值X1 | 默认值 | 最大值X2 |
|---|---|---|---|
| 烧结升温速率/(℃∙min-1) | 1 | 2 | 4 |
| 最高温度保持时间/h | 1 | 2 | 3 |
| 生坯样件表观密度/(g∙cm-3) | 2.9 | 3.9 | 4.9 |
| 方向 | 参数 | 参数最小值 | 参数最大值 | 相对变化率 | ||
|---|---|---|---|---|---|---|
| x,y | 烧结升温速率/(℃∙min-1) | 1 | 27.69 | 4 | 11.53 | 19.45 |
| 最高温度保持时间/h | 1 | 15.29 | 3 | 19.08 | 12.39 | |
| 生坯样件表观密度/(g∙cm-3) | 2.9 | 19.51 | 4.9 | 14.86 | 35.75 | |
| z | 烧结升温速率/(℃∙min-1) | 1 | 29.24 | 4 | 12.19 | 19.44 |
| 最高温度保持时间/h | 1 | 16.15 | 3 | 20.15 | 12.38 | |
| 生坯样件表观密度/(g∙cm-3) | 2.9 | 20.76 | 4.9 | 15.66 | 36.85 |
Table 8 Sensitivity of model to different parameters
| 方向 | 参数 | 参数最小值 | 参数最大值 | 相对变化率 | ||
|---|---|---|---|---|---|---|
| x,y | 烧结升温速率/(℃∙min-1) | 1 | 27.69 | 4 | 11.53 | 19.45 |
| 最高温度保持时间/h | 1 | 15.29 | 3 | 19.08 | 12.39 | |
| 生坯样件表观密度/(g∙cm-3) | 2.9 | 19.51 | 4.9 | 14.86 | 35.75 | |
| z | 烧结升温速率/(℃∙min-1) | 1 | 29.24 | 4 | 12.19 | 19.44 |
| 最高温度保持时间/h | 1 | 16.15 | 3 | 20.15 | 12.38 | |
| 生坯样件表观密度/(g∙cm-3) | 2.9 | 20.76 | 4.9 | 15.66 | 36.85 |
| [1] | Singh P, Balla V K, Gokce A, et al. Additive manufacturing of Ti-6Al-4V alloy by metal fused filament fabrication (MF3): producing parts comparable to that of metal injection molding[J]. Progress in Additive Manufacturing, 2021, 6(4): 593-606. |
| [2] | Singh G, Missiaen J M, Bouvard D, et al. Additive manufacturing of 17-4 PH steel using metal injection molding feedstock: analysis of 3D extrusion printing, debinding and sintering[J]. Additive Manufacturing, 2021, 47: 102287. |
| [3] | German R M. Sintering: from empirical observations to scientific principles[M]. Oxford: Butterworth-Heinemann, 2014: 153-161. |
| [4] | Caminero M Á, Romero Gutiérrez A, Chacón J M, et al. Effects of fused filament fabrication parameters on the manufacturing of 316L stainless-steel components: geometric and mechanical properties[J]. Rapid Prototyping Journal, 2022, 28(10): 2004-2026. |
| [5] | Abe Y, Kurose T, Santos M V, et al. Effect of layer directions on internal structures and tensile properties of 17-4PH stainless steel parts fabricated by fused deposition of metals[J]. Materials, 2021, 14(2): 243-255. |
| [6] | Quarto M, Carminati M, D’Urso G. Density and shrinkage evaluation of AISI 316L parts printed via FDM process[J]. Materials and Manufacturing Processes, 2021, 36(13): 1535-1543. |
| [7] | Liu B, Wang Y X, Lin Z W, et al. Creating metal parts by fused deposition modeling and sintering[J]. Materials Letters, 2020, 263: 127252. |
| [8] | Olevsky E A. Theory of sintering: from discrete to continuum[J]. Materials Science and Engineering: R: Reports, 1998, 23(2): 41-100. |
| [9] | Braginsky M, Tikare V, Garino T J, et al. Three-dimensional simulation of sintering using a continuum modeling approach[R]. Albuquerque: Sandia National Laboratories, 2003. |
| [10] | Petersson A, Ågren J. Constitutive behaviour of WC-Co materials with different grain size sintered under load[J]. Acta Materialia, 2004, 52(7): 1847-1858. |
| [11] | Kuczynski G. The mechanism of densification during sintering of metallic particles[J]. Acta Metallurgica, 1956, 4(1): 58-61. |
| [12] | Scherer G W. Sintering inhomogeneous glasses: application to optical waveguides[J]. Journal of Non-Crystalline Solids, 1979, 34(2): 239-256. |
| [13] | De Jonghe L C, Chu M Y, Lin M K F. Pore size distribution, grain growth, and the sintering stress[J]. Journal of Materials Science, 1989, 24: 4403-4408. |
| [14] | German R M. Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems[J]. Critical Reviews in Solid State and Materials Sciences, 2010, 35(4): 263-305. |
| [15] | Fukuyama H, Higashi H, Yamano H. Thermophysical properties of molten stainless steel containing 5% B4C[J]. Nuclear Technology, 2019, 205(9): 1154-1163. |
| [1] | Shi-jie JIANG, Shu-guang LI, Zi-zhao XU, Fei WANG. Static Mechanical Properties of Green Compact Specimens Fabricated by Metal Material Extrusion [J]. Journal of Northeastern University(Natural Science), 2025, 46(9): 95-101. |
| [2] | LUO Zhong, SHI Bao-long, ZHANG Xiao-xia, WU Fa-yong. Variation Law of Preload of Bolted Joint in Tightening Process [J]. Journal of Northeastern University(Natural Science), 2023, 44(2): 215-222. |
| [3] | WANG Hai-ying, LI Ya-ning, ZHOU Chang, WANG Lin. Cognitive Experimental Research on Anti-sense Signs [J]. Journal of Northeastern University Natural Science, 2019, 40(7): 1056-1060. |
| [4] | YANG Jia, WANG Lian-guang, HOU Wen-yu. Flexural Performance of Damaged Prestressed Reinforced Concrete Beams Strengthened with Near Surface Mounted CFRP Strips [J]. Journal of Northeastern University Natural Science, 2019, 40(4): 590-595. |
| [5] | YAN Bao-xu, ZHU Wan-cheng, HOU Chen, JIA Han-wen. A Comparative Study on the Stress Distribution in Mine Backfill Through Theoretical and Numerical Analysis [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1773-1778. |
| [6] | XU Shuai, AN Long, LI Yuan-hui, LU Dong. Multi-method Based Optimization of Crown Pillar Thickness from Open Pit to Underground [J]. Journal of Northeastern University Natural Science, 2018, 39(8): 1181-1186. |
| [7] | WANG Xiao-dong, FU Qiang, YI Shu, LI He. Experimental Investigation of Operating Characteristics of Ejector in Steam Jet Refrigeration System [J]. Journal of Northeastern University Natural Science, 2017, 38(12): 1744-1747. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||