
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (9): 119-125.DOI: 10.12068/j.issn.1005-3026.2025.20240016
• Resources & Civil Engineering • Previous Articles Next Articles
Meng CHEN1, Fu-cheng LIU1, Tong ZHANG1(
), Di WU2
Received:2024-01-17
Online:2025-09-15
Published:2025-12-03
Contact:
Tong ZHANG
CLC Number:
Meng CHEN, Fu-cheng LIU, Tong ZHANG, Di WU. Mechanical Properties and Working Mechanism of UHTCC with Recycled Fine Aggregate[J]. Journal of Northeastern University(Natural Science), 2025, 46(9): 119-125.
| 长度 | 直径 | 抗拉强度 | 弹性模量 | 密度 |
|---|---|---|---|---|
| mm | μm | MPa | GPa | kg·m-3 |
| 12 | 39 | 1 600 | 40 | 1 300 |
Table 1 Physical properties of PVA fibers
| 长度 | 直径 | 抗拉强度 | 弹性模量 | 密度 |
|---|---|---|---|---|
| mm | μm | MPa | GPa | kg·m-3 |
| 12 | 39 | 1 600 | 40 | 1 300 |
| 编号 | 水泥 | 粉煤灰 | 石英砂 | RFA | 水 | 减水剂 | PVA纤维 |
|---|---|---|---|---|---|---|---|
| S100R0 | 544 | 653 | 435 | 0 | 335 | 14 | 26 |
| S75R25 | 544 | 653 | 326 | 109 | 335 | 14 | 26 |
| S50R50 | 544 | 653 | 218 | 218 | 335 | 14 | 26 |
| S25R75 | 544 | 653 | 109 | 326 | 335 | 14 | 26 |
| S0R100 | 544 | 653 | 0 | 435 | 335 | 14 | 26 |
Table 2 Mix proportions of UHTCC
| 编号 | 水泥 | 粉煤灰 | 石英砂 | RFA | 水 | 减水剂 | PVA纤维 |
|---|---|---|---|---|---|---|---|
| S100R0 | 544 | 653 | 435 | 0 | 335 | 14 | 26 |
| S75R25 | 544 | 653 | 326 | 109 | 335 | 14 | 26 |
| S50R50 | 544 | 653 | 218 | 218 | 335 | 14 | 26 |
| S25R75 | 544 | 653 | 109 | 326 | 335 | 14 | 26 |
| S0R100 | 544 | 653 | 0 | 435 | 335 | 14 | 26 |
| [1] | 徐世烺, 李贺东. 超高韧性水泥基复合材料直接拉伸试验研究[J]. 土木工程学报, 2009, 42(9): 32-41. |
| Xu Shi-lang, Li He-dong. Uniaxial tensile experiments of ultra-high toughness cementitious composite[J]. China Civil Engineering Journal, 2009, 42(9): 32-41. | |
| [2] | Li V C. Engineered cementitious composites (UHTCC): bendable concrete for sustainable and resilient infrastructure[M].Germany: Springer, 2019: 1-15. |
| [3] | 肖建庄,叶涛华,隋同波,等. 废弃混凝土再生微粉的基本问题及应用[J].材料导报, 2023, 37(10):5-14. |
| Xiao Jian-zhuang, Ye Tao-hua, Sui Tong-bo, et al. Fundamental problems and applications of recycled fine powder derived from waste concrete[J]. Materials Reports, 2023, 37(10): 5-14. | |
| [4] | Duan Z H, Hou S D, Xiao J Z, et al. Study on the essential properties of recycled powders from construction and demolition waste[J]. Journal of Cleaner Production, 2020, 253: 119865. |
| [5] | Cuenca-Moyano G M, Martín-Pascual J, Martín-Morales M, et al. Effects of water to cement ratio, recycled fine aggregate and air entraining/plasticizer admixture on masonry mortar properties[J]. Construction and Building Materials, 2020, 230: 116929. |
| [6] | Ju M, Park K, Park W J. Mechanical behavior of recycled fine aggregate concrete with high slump property in normal- and high-strength[J]. International Journal of Concrete Structures and Materials, 2019, 14(1): 109-121. |
| [7] | Bai M Y, Wu Y C, Xiao J Z, et al. Workability and hardened properties of 3D printed engineered cementitious composites incorporating recycled sand and PE fibers[J]. Journal of Building Engineering, 2023, 71: 106477. |
| [8] | 曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5): 632-642. |
| Cao Ming-li, Xu Ling, Zhang Cong. Review on micromechanical design, performance and development tendency of engineered cementitious composite[J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 632-642. | |
| [9] | Yokota H, Rokugo K, Sakata N. Recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks (HPFRCC)[J]. Japan Society of Civil Engineers, 2008, 82: 6-10. |
| [10] | Lotfy A, Al-Fayez M. Performance evaluation of structural concrete using controlled quality coarse and fine recycled concrete aggregate[J]. Cement and Concrete Composites, 2015, 61: 36-43. |
| [11] | Leite M B, Figueire do Filho J G L, Lima P R L. Workability study of concretes made with recycled mortar aggregate[J]. Materials and Structures, 2013, 46(10): 1765-1778. |
| [12] | 杜婷 .高性能再生混凝土微观结构及性能试验研究[D].武汉:华中科技大学,2006. |
| Du Ting. Experimental study on the microstructure and basic behaviors of recycled high performance concrete[D]. Wuhan: Huazhong University of Science and Technology, 2006. | |
| [13] | Wang X J, Wu Y J, Zhu P H, et al. Improvement of mechanical properties and carbonation durability of recycled fine aggregate engineered cementitious composites for structural strengthening[J]. Journal of Building Engineering, 2023, 76: 107277. |
| [14] | Liu J, Ma K L, Shen J B, et al. Influence of recycled concrete aggregate enhancement methods on the change of microstructure of ITZs in recycled aggregate concrete[J]. Construction and Building Materials, 2023, 371: 130772. |
| [15] | 闫增辉. 低温养护再生混凝土粉超高韧性水泥基复合材料力学性能研究[D]. 郑州: 郑州大学, 2021. |
| Yan Zeng-hui. Study on mechanical properties of ultra-high toughness cement-based composites with recycled concrete powder cured at low temperature[D]. Zhengzhou: Zhengzhou University, 2021. | |
| [16] | Tosun-Felekoğlu K, Felekoğlu B, Ranade R, et al. The role of flaw size and fiber distribution on tensile ductility of PVA-ECC[J]. Composites Part B: Engineering, 2014, 56: 536-545. |
| [17] | Adesina A, Das S. Development of sustainable engineered cementitious composites using recycled concrete aggregates—feasibility study based on mechanical properties[J]. ACI Materials Journal, 2021, 118(4): 97-107. |
| [18] | Curosu I, Liebscher M, Alsous G, et al. Tailoring the crack-bridging behavior of strain-hardening cement-based composites (SHCC) by chemical surface modification of poly(vinyl alcohol) (PVA) fibers[J]. Cement and Concrete Composites, 2020, 114: 103722. |
| [19] | Bai M Y, Xiao J Z, Gao Y, et al. Pore structure characteristics and mechanical property of engineered cementitious composites (ECC) incorporating recycled sand[J]. Construction and Building Materials, 2023, 408: 133721. |
| [1] | Shi-jie JIANG, Shu-guang LI, Zi-zhao XU, Fei WANG. Static Mechanical Properties of Green Compact Specimens Fabricated by Metal Material Extrusion [J]. Journal of Northeastern University(Natural Science), 2025, 46(9): 95-101. |
| [2] | Xian-lei HU, Peng HAN, Qin-cheng XIE, Ying ZHI. Effect of Pre-forming Process of Tailor Rolled Blank on Al-Si Coating [J]. Journal of Northeastern University(Natural Science), 2025, 46(9): 65-72. |
| [3] | Xing-long LIU, Chen LI, Zeng LIN. Effect of TiAlSiN Coating Structure on Its Mechanical Properties [J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 33-42. |
| [4] | Ying WANG, Xiao-wei GU, Qing WANG, Xiao-chuan XU. Properties and Hydration Mechanism of Lime-Based Slag‑Steel Slag Composite Cementitious Materials [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1459-1468. |
| [5] | MAO Ning, NIU Hui-rong, LIU Jing-xian. Experimental Study on Acid Resistance Characteristics of Polyaromatic Oxadiazole Fiber [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 719-725. |
| [6] | REN Zhao-hui, LI Zhu-hong, WANG Yun-he, ZHANG Zi-ting. Surface Mechanical Properties of Ultrasonic Rolling Micro-forging Additive Manufactured Parts [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 634-641. |
| [7] | WANG Hai-tao, LI Jia-dong, DENG Xiang-tao, WANG Zhao-dong. Effect of Solution Temperature on Microstructure and Mechanical Properties of Fe-20Mn-9Al-1.2C Low-Density Steel [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 609-616. |
| [8] | WU Guan-qing, WEI Jin, YUE Xia-bing, YIN Zeng-liang. Deformation Characteristics and Vertical Earth Pressure Calculation of Low Fill Steel Corrugated Pipe Culverts [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1337-1345. |
| [9] | TIAN Ni , ZHANG Yao-zhong, ZHOU Yi-ran, QIN Guang-hua. Effect of Zr Addition on Microstructure and Mechanical Properties of Al-10Zn-2.5Mg-1.6Cu Alloy Sheet [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 951-958. |
| [10] | ZHAO Yu-hui , GAO Meng-qiu , ZHAO Ji-bin , HE Chen. Microstructure and Properties of WC Particles Reinforced 316L Stainless Steel Composites Prepared by Additive and Subtractive Manufacturing [J]. Journal of Northeastern University(Natural Science), 2022, 43(2): 197-205. |
| [11] | ZHU Cheng-lin, GAO Xiu-hua, WANG Ming-ming, SONG Li-ying. Effect of Quenching Temperature on Microstructure and Mechanical Properties of 12Cr14Ni2 Stainless Structural Steel [J]. Journal of Northeastern University(Natural Science), 2021, 42(6): 781-788. |
| [12] | DONG Shuo, SHA Song, MENG Shi-qian, RONG Guan. Experimental Investigation of Mechanical Properties of Three Types of High Temperature Rocks After Liquid Nitrogen Cooling [J]. Journal of Northeastern University(Natural Science), 2021, 42(11): 1591-1599. |
| [13] | BAO Jun-feng, YU Yue-guang, JIA Cheng-chang. Effects of ZrO2 Addition Amount on Microstructure and Mechanical Property of WC-6Co Prepared by Spark Plasma Sintering [J]. Journal of Northeastern University(Natural Science), 2021, 42(1): 43-48. |
| [14] | WANG Ming-ming, GAO Xiu-hua, DU Lin-xiu, ZHANG Da-zheng. Microstructure and Mechanical Properties of V-N Microalloyed X80 High Deformability Pipeline Steel [J]. Journal of Northeastern University Natural Science, 2020, 41(6): 801-806. |
| [15] | ZHANG Zhi-qiang, HE Chang-shu, ZHAO Su, ZHAO Xiang. Microstructure and Mechanical Properties of the Stirred Zone of Ultrasonic Assisted Friction Stir Welded Joint of 7075-T6 Alloy [J]. Journal of Northeastern University Natural Science, 2020, 41(12): 1708-1714. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||