| [1] |
Alper K, Tekin K, Karagöz S, et al. Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing[J]. Sustainable Energy & Fuels, 2020, 4(9): 4390-4414.
|
| [2] |
Taherdanak M, Zilouei H. Improving biogas production from wheat plant using alkaline pretreatment[J]. Fuel, 2014, 115: 714-719.
|
| [3] |
Sansaniwal S K, Rosen M A, Tyagi S K. Global challenges in the sustainable development of biomass gasification: an overview[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 23-43.
|
| [4] |
Xu D G, Wang P A, Pang D J, et al. Chemocatalytic conversion of cellulosic biomass to methyl glycolate, ethylene glycol, and ethanol[J]. Chemistry Sustainability Energy Materials, 2017, 10(7): 1390-1394.
|
| [5] |
胡二峰, 赵立欣, 吴娟, 等. 生物质热解影响因素及技术研究进展[J]. 农业工程学报,2018,34(14):212-220.
|
|
Hu Er-feng, Zhao Li-xin, Wu Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 212-220.
|
| [6] |
Witton J J, Noordally E, Przybylski J M. Clean catalytic combustion of low heat value fuels from gasification processes[J]. Chemical Engineering Journal, 2003, 91(2/3): 115-121.
|
| [7] |
Kwiatkowski K, Mastorakos E. Regimes of nonpremixed combustion of hot low-calorific-value gases derived from biomass gasification[J]. Energy & Fuels, 2016, 30(6): 4386-4397.
|
| [8] |
Kwiatkowski K, Dudyński M, Bajer K. Combustion of low-calorific waste biomass syngas[J]. Flow, Turbulence and Combustion, 2013, 91(4): 749-772.
|
| [9] |
Buchmayr M, Gruber J, Hargassner M,et al. A computationally inexpensive CFD approach for small-scale biomass burners equipped with enhanced air staging[J]. Energy Conversion & Management,2016,115:32-42.
|
| [10] |
Chanphavong L, Zainal Z A. Characterization and challenge of development of producer gas fuel combustor: a review[J]. Journal of the Energy Institute, 2019, 92(5): 1577-1590.
|
| [11] |
Dybe S, Bluemner R, Zhang K, et al. Design and experimental characterization of a swirl-stabilized combustor for low calorific value gaseous fuels[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(2): 021025.
|
| [12] |
Rowhani A, Tabejamaat S. Experimental study of the effects of swirl and air dilution on biogas non-premixed flame stability[J]. Thermal Science, 2015, 19(6): 2161-2169.
|
| [13] |
Surjosatyo A, Ani F N. Study of enhancing the swirl burner performance on a small scale biomass gasification[J]. International Journal of Engineering & Technology, 2011, 11(4): 21-38.
|
| [14] |
Samiran N A, Ng J H, Mohd-Jaafar M N, et al. Swirl stability and emission characteristics of CO-enriched syngas/air flame in a premixed swirl burner[J]. Process Safety and Environmental Protection, 2017, 112: 315-326.
|
| [15] |
Sivri I, Yilmaz H, Cam O, et al. Combustion and emission characteristics of premixed biogas mixtures: an experimental study[J]. International Journal of Hydrogen Energy, 2022, 47(24): 12377-12392.
|
| [16] |
Hussein N A, Valera-Medina A, Alsaegh A S. Ammonia-hydrogen combustion in a swirl burner with reduction of NO x emissions[J]. Energy Procedia, 2019, 158: 2305-2310.
|
| [17] |
De Pascale A, Fussi M, Peretto A. Numerical simulation of biomass derived syngas combustion in a swirl flame combustor[C]//ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, 2010: 571-582.
|
| [18] |
Saediamiri M, Birouk M, Kozinski J A. On the stability of a turbulent non-premixed biogas flame: effect of low swirl strength[J]. Combustion and Flame, 2014, 161(5): 1326-1336.
|
| [19] |
崔耀星, 汤建勋, 聂晓明. 激光多普勒测速仪在线标定算法[J]. 传感器与微系统, 2020, 39(1): 105-108.
|
|
Cui Yao-xing, Tang Jian-xun, Nie Xiao-ming. Laser doppler velocimeter online calibration algorithm[J]. Transducer and Microsystem Technologies, 2020, 39(1): 105-108.
|
| [20] |
Wu Y, Zhang J, Smith P J, et al. Three-dimensional simulation for an entrained flow coal slurry gasifier[J]. Energy & Fuels, 2010, 24(2): 1156-1163.
|
| [21] |
冯明杰,李德立,王恩刚. 火焰长度可调式燃烧器的数值模拟[J]. 东北大学学报(自然科学版), 2014, 35(9): 1279-1283.
|
|
Feng Ming-jie, Li De-li, Wang En-gang. Numerical simulation of an adjustable length of flame gas burner[J]. Journal of Northeastern University (Natural Science), 2014, 35(9): 1279-1283.
|
| [22] |
Shih T H, Liou W W, Shabbir A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computer & Fluids, 1995, 24(3), 227–238.
|