
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (10): 132-142.DOI: 10.12068/j.issn.1005-3026.2025.20240070
• Resources & Civil Engineering • Previous Articles
Tao XU1, Jing-chang QIU1, Yang YUAN2, Bin XU1
Received:2024-03-28
Online:2025-10-15
Published:2026-01-13
CLC Number:
Tao XU, Jing-chang QIU, Yang YUAN, Bin XU. Damage Evolution Characteristics of Saturated Sandstone in Freeze-Thaw Cycles[J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 132-142.
| 石英 | 方英石 | 斜长石 | 钾长石 | 黏土矿物 |
|---|---|---|---|---|
| 21.1 | 22.4 | 29.4 | 22.4 | 4.7 |
Table 1 Mineral composition and content in
| 石英 | 方英石 | 斜长石 | 钾长石 | 黏土矿物 |
|---|---|---|---|---|
| 21.1 | 22.4 | 29.4 | 22.4 | 4.7 |
烘干 质量/g | 干密度 | 饱和密度 | 饱和含水率% | 纵波波速 |
|---|---|---|---|---|
| g·cm-3 | g·cm-3 | m· | ||
| 64.3 | 2.04 | 2.2 | 7.1 | 2 841 |
Table 2 Initial average physical parameters of
烘干 质量/g | 干密度 | 饱和密度 | 饱和含水率% | 纵波波速 |
|---|---|---|---|---|
| g·cm-3 | g·cm-3 | m· | ||
| 64.3 | 2.04 | 2.2 | 7.1 | 2 841 |
| 基本属性 | 参数值 |
|---|---|
| 均质度 | 5 |
| 弹性模量 | 4.5 |
| 抗压强度均值/MPa | 50 |
| 孔隙度/% | 16.15 |
| 泊松比 | 0.3 |
| 内摩擦角/(°) | 40° |
| 岩石导热系数/(W·m-1·K-1) | 1.3 |
| 水导热系数/(W·m-1·K-1) | 0.55 |
| 冰导热系数/(W·m-1·K-1) | 2.2 |
Table 3 Mechanical indicators of sandstone
| 基本属性 | 参数值 |
|---|---|
| 均质度 | 5 |
| 弹性模量 | 4.5 |
| 抗压强度均值/MPa | 50 |
| 孔隙度/% | 16.15 |
| 泊松比 | 0.3 |
| 内摩擦角/(°) | 40° |
| 岩石导热系数/(W·m-1·K-1) | 1.3 |
| 水导热系数/(W·m-1·K-1) | 0.55 |
| 冰导热系数/(W·m-1·K-1) | 2.2 |
| [1] | Lyu Z T, Xia C C, Liu W D. Analytical solution of frost heaving force and stress distribution in cold region tunnels under non-axisymmetric stress and transversely isotropic frost heave of surrounding rock [J]. Cold Regions Science and Technology, 2020, 178:103117. |
| [2] | Li Z G, Xu T, Zhao L C, et al. Enhancing stability analysis of open-pit slopes via integrated 3D numerical modeling and data monitoring [J]. Engineering Failure Analysis, 2024, 163: 108495. |
| [3] | Krautblatter M, Funk D, Günzel F K. Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space[J]. Earth Surface Processes and Landforms, 2013, 38(8): 876-887. |
| [4] | Song Y Q, Kausir R. NMR application in unconventional shale reservoirs-a new porous media research frontier [J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 112:17-33. |
| [5] | Gong Y F, Song J X, Wu S Z, et al. Evolution of pore structure and analysis of freeze damage in granite during cyclic freeze-thaw using NMR technique[J]. Engineering Geology, 2024, 335: 107545. |
| [6] | 吴志军, 卢槐, 翁磊, 等. 基于核磁共振实时成像技术的裂隙砂岩渗流特性研究 [J]. 岩石力学与工程学报, 2021, 40(2): 263-275. |
| Wu Zhi-jun, Lu Huai, Weng Lei, et al. Investigations on the seepage characteristics of fractured sandstone based on NMR real-time imaging [J]. Chinese Journal of Rock Mechanics and Engineering, 2021,40(2):263–275. | |
| [7] | 高峰, 熊信, 周科平, 等. 冻融循环作用下饱水砂岩的强度劣化模型 [J]. 岩土力学, 2019, 40(3): 926-932. |
| Gao Feng, Xiong Xin, Zhou Ke-ping, et al. Strength deterioration model of saturated sandstone under freeze-thaw cycle [J]. Rock and Soil Mechanics, 2019, 40(3): 926-932. | |
| [8] | Jiang H B, Li K N, Jin J. The variation characteristics of micro-pore structures of underground rocks in cold regions subject to freezing and thawing cycles [J]. Arabian Journal of Geosciences, 2020, 13:1-7. |
| [9] | Yanaghi J, Liu H Y, Chan A, et al. Experimental, theoretical and numerical modelling of the deterioration and failure process of sandstones subject to freeze-thaw cycles [J]. Engineering Failure Analysis, 2022, 141(1): 106686. |
| [10] | 朱谭谭, 李昂, 黄达, 等. 应力-冻融耦合作用下砂岩变形与损伤特征研究[J]. 岩石力学与工程学报,2023,42(2): 342-351. |
| Zhu Tan-tan, Li Ang, Huang Da, et al. Deformation and damage characteristics of sandstone under the combined action of stress and freeze-thaw cycle [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(2): 342-351. | |
| [11] | Yin W, Wang X Y, Zheng S A, et al. Triaxial creep test and damage model study of layered red sandstone under freeze-thaw cycles[J]. Case Studies in Construction Materials, 2024, 21: e03785. |
| [12] | 肖鹏, 陈有亮, 杜曦, 等. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究 [J]. 岩土工程学报, 2023, 45(4): 805-815. |
| Xiao Peng, Chen You-liang, Du Xi, et al. Mechanical properties of sandstone under freeze-thaw cycles and the study of meso-damage constitutive model [J]. Chinese Journal of Geotechnical Engineering, 2023,45(4): 805-815. | |
| [13] | 王震, 朱珍德, 陈会官, 等. 冻融作用下岩石力-热-水耦合本构模型研究 [J]. 岩土力学, 2019, 40(7): 2608-2616. |
| Wang Zhen, Zhu Zhen-de, Chen Hui-guan, et al. A thermo-hydro-mechanical coupled constitutive model for rocks under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(7): 2608-2616. | |
| [14] | Liu N F, Liang S H, Wang S J, et al. THM model of rock tunnels in cold regions and numerical simulation[J]. Scientific Reports, 2024, 14(1): 3465. |
| [15] | 刘泉声, 康永水, 刘滨, 等. 裂隙岩体水-冰相变及低温温度场-渗流场-应力场耦合研究 [J]. 岩石力学与工程学报, 2011, 30(11): 2181-2188. |
| Liu Quan-sheng, Kang Yong-shui, Liu Bin, et al. Water-ice phase transition and thermo-hydro-mechanical coupling at low temperature in fractured rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2181-2188. | |
| [16] | Nie R S, Zhou J, Chen Z X, et al. Pore structure characterization of tight sandstones via a novel integrated method: a case study of the Sulige gas field, Ordos Basin (Northern China) [J]. Journal of Asian Earth Sciences, 2021, 213: 104739. |
| [17] | Xu B, Xu T, Xue Y C, et al. Phase field modeling of mixed-mode crack in rocks incorporating heterogeneity and frictional damage [J]. Engineering Fracture Mechanics, 2024, 298: 109936. |
| [18] | Zuber B, Marchand J. Predicting the volume instability of hydrated cement systems upon freezing using poro-mechanics and local phase equilibria [J]. Materials and Structures,2004, 37: 257-270. |
| [19] | Zhu W C, Wei C H, Liu J, et al. A model of coal-gas interaction under variable temperatures [J]. International Journal of Coal Geology, 2011, 86(2/3): 213-221. |
| [20] | Xu T, Tang C A, Yang T H, et al. Numerical investigation of coal and gas outbursts in underground collieries [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 905-919. |
| [21] | 朱万成, 魏晨慧, 田军, 等. 岩石损伤过程中的热-流-力耦合模型及其应用初探 [J]. 岩土力学, 2009,30(12): 3851-3857. |
| Zhu Wan-cheng, Wei Chen-hui, Tian Jun, et al. Coupled thermal-hydraulic-mechanical model during rock damage and its preliminary application [J]. Rock and Soil Mechanics, 2009, 30(12): 3851-3857. | |
| [22] | Hao S W, Wang H Y, Xia M F, et al. Relationship between strain localization and catastrophic rupture [J]. Theoretical and Applied Fracture Mechanics, 2007, 48(1): 41-49. |
| [23] | Huang S B, Liu Q S, Cheng A P, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Regions Science and Technology, 2018, 145: 142-150. |
| [1] | Bo HAO, Peng ZHANG, Zhi-ming ZHU. Parameter Analysis and Verification of Variable F-RD-Type Lattice Structure [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1294-1300. |
| [2] | Jia-hao ZHAO, Yang QU, Hong-jie LUO, Shi-jie YANG. Effect of Sintering Process on Microstructure and Mechanical Property of Porous Ti [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 816-822. |
| [3] | Peng JIA, Song-ze MAO, Yi-jin QIAN, Jia-liang LU. Dynamic Splitting Characteristics of Freeze-Thawed Sandstone at Different Loading Rates [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 111-119. |
| [4] | GUO Jia-huan, WANG Bo-xin, ZHANG Tian-qi, WANG Shi-yu. Study on Impermeability of Textile Reinforced Concrete [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1354-1360. |
| [5] | YUAN Yang, XU Tao, ZHOU Guang-lei, LE Zhi-hua. Simulation Method of Damage and Fracture for Brittle Rock Based on Microplane Model and Regularization [J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1141-1148. |
| [6] | KANG Yu-mei, ZHANG Nai-yuan, REN Chao, CHEN Meng. Acoustic Emission Characteristics of CFST Columns Under Uniaxial Compression [J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 720-726. |
| [7] | LIU Zhi-bin, LIU Feng, ZHANG Shu-jian, BAI Mei. Effect of Freeze-Thaw Cycles on Hydraulic Permeability of GCL [J]. Journal of Northeastern University Natural Science, 2020, 41(7): 1027-1032. |
| [8] | ZHANG Jun, LI Zhi-wei. Viscoelastic-Plastic Damage Constitutive Model of Asphalt Mixture Under Cyclic Loading [J]. Journal of Northeastern University Natural Science, 2019, 40(10): 1496-1503. |
| [9] | WANG Shu-hong, ZHANG Ze, HOU Wen-shuai, WANG Fei-li. Risk Assessment Method on Multi-disaster Coupled Hazard for Urban Utility Tunnel [J]. Journal of Northeastern University Natural Science, 2018, 39(6): 902-906. |
| [10] | CHEN Chong-feng, XU Tao, HEAP Michael,YANG Tian-hong. Modeling of the Influence of Pore Size and Porosity on Strength Characteristics of Volcanic Rock [J]. Journal of Northeastern University:Natural Science, 2017, 38(5): 725-729. |
| [11] | GAO Qiang-jian, WEI Guo, JIANG Xin, SHEN Feng-man. Effect of MgO on Compressive Strength of Reduced Iron Ore Pellet [J]. Journal of Northeastern University Natural Science, 2016, 37(10): 1407-1410. |
| [12] | GAO Qiangjian, JIANG Xin, WEI Guo, SHEN Fengman. Characterization of Consolidation Degree of Iron Ore Pellet by Mercury Injection Method [J]. Journal of Northeastern University, 2013, 34(6): 832-835. |
| [13] | GAO Qiang-jian, WEI Guo, HE Yi-bo, SHEN Feng-man. Effect of MgO on Compressive Strength of Pellet [J]. Journal of Northeastern University:Natural Science, 2013, 34(1): 103-106. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||