Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (5): 10-19.DOI: 10.12068/j.issn.1005-3026.2025.20249048
• Information & Control • Previous Articles
Jia-tong LIU, Li-na WANG(), Run WANG, Xi YE
Received:
2024-10-10
Online:
2025-05-15
Published:
2025-08-07
Contact:
Li-na WANG
CLC Number:
Jia-tong LIU, Li-na WANG, Run WANG, Xi YE. Facial Mask Guidance Based Multi-person Scene Images Forgery Localization Algorithm[J]. Journal of Northeastern University(Natural Science), 2025, 46(5): 10-19.
方法 | OF | MF | FW | DS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |||||
GradCAM | 91.0 | 90.7 | 95.0 | 97.9 | 97.9 | 98.9 | 92.5 | 92.3 | 96.0 | 82.3 | 76.9 | 86.8 |
Patch | 91.7 | 91.5 | 95.4 | 97.9 | 97.9 | 98.9 | 92.9 | 92.9 | 96.2 | 81.8 | 76.4 | 86.4 |
HiFi-Net | 91.6 | 91.6 | 95.2 | 97.3 | 97.2 | 98.8 | 90.5 | 90.4 | 95.0 | 67.8 | 67.6 | 78.8 |
Attention | 91.0 | 91.0 | 95.0 | 98.0 | 98.0 | 99.0 | 93.0 | 92.9 | 95.6 | 82.2 | 76.8 | 86.7 |
FMG-F | 94.6 | 94.5 | 95.3 | 98.2 | 98.2 | 99.8 | 94.2 | 94.1 | 96.6 | 86.4 | 84.4 | 85.8 |
FMG-L | 94.8 | 94.7 | 95.4 | 98.3 | 98.3 | 99.8 | 94.5 | 94.4 | 96.6 | 87.7 | 85.5 | 85.4 |
Table 1 Forgery localization performance within the datasets
方法 | OF | MF | FW | DS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |||||
GradCAM | 91.0 | 90.7 | 95.0 | 97.9 | 97.9 | 98.9 | 92.5 | 92.3 | 96.0 | 82.3 | 76.9 | 86.8 |
Patch | 91.7 | 91.5 | 95.4 | 97.9 | 97.9 | 98.9 | 92.9 | 92.9 | 96.2 | 81.8 | 76.4 | 86.4 |
HiFi-Net | 91.6 | 91.6 | 95.2 | 97.3 | 97.2 | 98.8 | 90.5 | 90.4 | 95.0 | 67.8 | 67.6 | 78.8 |
Attention | 91.0 | 91.0 | 95.0 | 98.0 | 98.0 | 99.0 | 93.0 | 92.9 | 95.6 | 82.2 | 76.8 | 86.7 |
FMG-F | 94.6 | 94.5 | 95.3 | 98.2 | 98.2 | 99.8 | 94.2 | 94.1 | 96.6 | 86.4 | 84.4 | 85.8 |
FMG-L | 94.8 | 94.7 | 95.4 | 98.3 | 98.3 | 99.8 | 94.5 | 94.4 | 96.6 | 87.7 | 85.5 | 85.4 |
方法 | 训练 | MF | FW | DS | 训练 | OF | FW | DS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |||
GradCAM | OF | 91.2 | 91.2 | 87.5 | 87.5 | 68.2 | 68.0 | MF | 87.4 | 87.2 | 90.2 | 90.1 | 73.2 | 71.6 |
Patch | 92.3 | 92.2 | 88.6 | 89.6 | 68.5 | 68.2 | 89.7 | 89.5 | 90.4 | 90.3 | 74.2 | 71.0 | ||
HiFi-Net | 93.2 | 93.1 | 90.7 | 90.6 | 67.9 | 67.9 | 90.9 | 90.7 | 89.4 | 89.3 | 70.7 | 69.6 | ||
Attention | 92.4 | 92.5 | 89.6 | 89.6 | 68.4 | 68.2 | 88.3 | 88.2 | 91.7 | 91.7 | 72.5 | 71.0 | ||
FMG-F | 95.3 | 95.3 | 92.6 | 92.6 | 70.5 | 69.2 | 92.9 | 92.7 | 94.3 | 94.2 | 74.9 | 72.0 | ||
FMG-L | 95.5 | 95.5 | 92.7 | 92.8 | 73.2 | 71.4 | 93.0 | 92.8 | 94.4 | 94.3 | 75.6 | 72.6 | ||
方法 | 训练 | OF | MF | DS | 训练 | OF | MF | FW | ||||||
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |||
GradCAM | FW | 88.4 | 88.2 | 90.4 | 90.3 | 71.1 | 69.5 | DS | 88.3 | 88.8 | 89.7 | 89.6 | 89.4 | 89.3 |
Patch | 90.9 | 90.7 | 92.0 | 93.0 | 71.4 | 69.6 | 84.0 | 83.3 | 91.9 | 91.9 | 90.0 | 90.9 | ||
HiFi-Net | 89.2 | 89.1 | 91.8 | 91.8 | 67.9 | 67.9 | 88.2 | 88.2 | 90.9 | 90.8 | 88.8 | 88.8 | ||
Attention | 90.2 | 90.2 | 92.7 | 92.7 | 70.7 | 70.0 | 89.2 | 88.7 | 91.8 | 91.8 | 91.1 | 91.9 | ||
FMG-F | 91.1 | 91.0 | 94.2 | 94.2 | 71.1 | 69.9 | 90.9 | 90.8 | 94.4 | 94.3 | 94.2 | 94.1 | ||
FMG-L | 91.2 | 91.1 | 95.0 | 94.7 | 71.5 | 70.1 | 91.1 | 90.9 | 94.4 | 94.5 | 94.3 | 94.2 |
Table 2 Forgery localization results across the datasets
方法 | 训练 | MF | FW | DS | 训练 | OF | FW | DS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |||
GradCAM | OF | 91.2 | 91.2 | 87.5 | 87.5 | 68.2 | 68.0 | MF | 87.4 | 87.2 | 90.2 | 90.1 | 73.2 | 71.6 |
Patch | 92.3 | 92.2 | 88.6 | 89.6 | 68.5 | 68.2 | 89.7 | 89.5 | 90.4 | 90.3 | 74.2 | 71.0 | ||
HiFi-Net | 93.2 | 93.1 | 90.7 | 90.6 | 67.9 | 67.9 | 90.9 | 90.7 | 89.4 | 89.3 | 70.7 | 69.6 | ||
Attention | 92.4 | 92.5 | 89.6 | 89.6 | 68.4 | 68.2 | 88.3 | 88.2 | 91.7 | 91.7 | 72.5 | 71.0 | ||
FMG-F | 95.3 | 95.3 | 92.6 | 92.6 | 70.5 | 69.2 | 92.9 | 92.7 | 94.3 | 94.2 | 74.9 | 72.0 | ||
FMG-L | 95.5 | 95.5 | 92.7 | 92.8 | 73.2 | 71.4 | 93.0 | 92.8 | 94.4 | 94.3 | 75.6 | 72.6 | ||
方法 | 训练 | OF | MF | DS | 训练 | OF | MF | FW | ||||||
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |||
GradCAM | FW | 88.4 | 88.2 | 90.4 | 90.3 | 71.1 | 69.5 | DS | 88.3 | 88.8 | 89.7 | 89.6 | 89.4 | 89.3 |
Patch | 90.9 | 90.7 | 92.0 | 93.0 | 71.4 | 69.6 | 84.0 | 83.3 | 91.9 | 91.9 | 90.0 | 90.9 | ||
HiFi-Net | 89.2 | 89.1 | 91.8 | 91.8 | 67.9 | 67.9 | 88.2 | 88.2 | 90.9 | 90.8 | 88.8 | 88.8 | ||
Attention | 90.2 | 90.2 | 92.7 | 92.7 | 70.7 | 70.0 | 89.2 | 88.7 | 91.8 | 91.8 | 91.1 | 91.9 | ||
FMG-F | 91.1 | 91.0 | 94.2 | 94.2 | 71.1 | 69.9 | 90.9 | 90.8 | 94.4 | 94.3 | 94.2 | 94.1 | ||
FMG-L | 91.2 | 91.1 | 95.0 | 94.7 | 71.5 | 70.1 | 91.1 | 90.9 | 94.4 | 94.5 | 94.3 | 94.2 |
方法 | 原始图像 | JPEG | GN | GB | BW | CS | CC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |
GradCAM | 91.0 | 90.7 | 88.9 | 88.6 | 87.9 | 87.8 | 88.4 | 88.3 | 89.9 | 89.8 | 89.8 | 89.7 | 90.2 | 89.9 |
Patch | 91.7 | 91.5 | 88.9 | 88.8 | 87.8 | 87.8 | 88.5 | 88.4 | 89.6 | 89.5 | 87.7 | 87.7 | 89.5 | 89.4 |
HiFi-Net | 91.6 | 91.6 | 91.0 | 91.0 | 90.6 | 90.9 | 90.9 | 90.8 | 91.1 | 91.1 | 90.8 | 90.8 | 91.0 | 91.6 |
Attention | 91.0 | 91.0 | 89.1 | 89.0 | 86.6 | 86.5 | 88.4 | 88.4 | 89.4 | 89.3 | 86.9 | 87.1 | 89.6 | 89.6 |
FMG-F | 94.6 | 94.5 | 94.3 | 94.2 | 93.9 | 93.8 | 94.4 | 94.4 | 93.2 | 93.1 | 93.6 | 93.6 | 92.6 | 92.4 |
FMG-L | 94.8 | 94.7 | 94.5 | 94.4 | 94.3 | 94.2 | 94.5 | 94.5 | 93.4 | 93.3 | 93.7 | 93.7 | 92.8 | 92.7 |
Table 3 Forgery localization performance for different image degradations
方法 | 原始图像 | JPEG | GN | GB | BW | CS | CC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |
GradCAM | 91.0 | 90.7 | 88.9 | 88.6 | 87.9 | 87.8 | 88.4 | 88.3 | 89.9 | 89.8 | 89.8 | 89.7 | 90.2 | 89.9 |
Patch | 91.7 | 91.5 | 88.9 | 88.8 | 87.8 | 87.8 | 88.5 | 88.4 | 89.6 | 89.5 | 87.7 | 87.7 | 89.5 | 89.4 |
HiFi-Net | 91.6 | 91.6 | 91.0 | 91.0 | 90.6 | 90.9 | 90.9 | 90.8 | 91.1 | 91.1 | 90.8 | 90.8 | 91.0 | 91.6 |
Attention | 91.0 | 91.0 | 89.1 | 89.0 | 86.6 | 86.5 | 88.4 | 88.4 | 89.4 | 89.3 | 86.9 | 87.1 | 89.6 | 89.6 |
FMG-F | 94.6 | 94.5 | 94.3 | 94.2 | 93.9 | 93.8 | 94.4 | 94.4 | 93.2 | 93.1 | 93.6 | 93.6 | 92.6 | 92.4 |
FMG-L | 94.8 | 94.7 | 94.5 | 94.4 | 94.3 | 94.2 | 94.5 | 94.5 | 93.4 | 93.3 | 93.7 | 93.7 | 92.8 | 92.7 |
方法 | 原始图像 | TikTok | WeChat(PC) | YouTube | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |
GradCAM | 97.9 | 97.9 | 94.5 | 94.5 | 95.6 | 95.5 | 95.0 | 94.9 | 96.3 | 96.3 | 95.1 | 95.0 | 96.0 | 95.9 |
Patch | 97.9 | 97.9 | 94.5 | 94.4 | 95.5 | 95.5 | 95.0 | 94.9 | 96.2 | 96.2 | 95.0 | 95.0 | 96.0 | 95.9 |
HiFi-Net | 97.3 | 97.2 | 96.8 | 96.7 | 96.4 | 96.3 | 96.3 | 96.2 | 96.5 | 96.5 | 96.4 | 96.3 | 96.5 | 96.5 |
Attention | 98.0 | 98.0 | 94.7 | 94.7 | 95.7 | 95.7 | 95.1 | 95.1 | 96.5 | 96.4 | 95.2 | 95.2 | 96.1 | 96.1 |
FMG-F | 98.2 | 98.2 | 97.3 | 97.2 | 97.2 | 97.1 | 97.1 | 97.0 | 97.0 | 97.5 | 97.1 | 97.0 | 97.2 | 97.2 |
FMG-L | 98.3 | 98.3 | 97.8 | 97.7 | 97.3 | 97.2 | 97.4 | 97.3 | 97.5 | 98.0 | 97.4 | 97.4 | 97.4 | 97.3 |
Table 4 Forgery localization performance for different online social platforms
方法 | 原始图像 | TikTok | WeChat(PC) | YouTube | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | Acc | IoU | |
GradCAM | 97.9 | 97.9 | 94.5 | 94.5 | 95.6 | 95.5 | 95.0 | 94.9 | 96.3 | 96.3 | 95.1 | 95.0 | 96.0 | 95.9 |
Patch | 97.9 | 97.9 | 94.5 | 94.4 | 95.5 | 95.5 | 95.0 | 94.9 | 96.2 | 96.2 | 95.0 | 95.0 | 96.0 | 95.9 |
HiFi-Net | 97.3 | 97.2 | 96.8 | 96.7 | 96.4 | 96.3 | 96.3 | 96.2 | 96.5 | 96.5 | 96.4 | 96.3 | 96.5 | 96.5 |
Attention | 98.0 | 98.0 | 94.7 | 94.7 | 95.7 | 95.7 | 95.1 | 95.1 | 96.5 | 96.4 | 95.2 | 95.2 | 96.1 | 96.1 |
FMG-F | 98.2 | 98.2 | 97.3 | 97.2 | 97.2 | 97.1 | 97.1 | 97.0 | 97.0 | 97.5 | 97.1 | 97.0 | 97.2 | 97.2 |
FMG-L | 98.3 | 98.3 | 97.8 | 97.7 | 97.3 | 97.2 | 97.4 | 97.3 | 97.5 | 98.0 | 97.4 | 97.4 | 97.4 | 97.3 |
Block | Acc | IoU |
---|---|---|
1 | 93.3 | 93.2 |
2 | 94.8 | 94.7 |
3 | 93.4 | 93.3 |
4 | 92.2 | 92.0 |
Table 5 Forgery localization performance with different number of Blocks on OF dataset %
Block | Acc | IoU |
---|---|---|
1 | 93.3 | 93.2 |
2 | 94.8 | 94.7 |
3 | 93.4 | 93.3 |
4 | 92.2 | 92.0 |
算子 | Acc | IoU |
---|---|---|
92.4 | 92.5 | |
89.7 | 89.6 | |
91.2 | 91.0 | |
93.9 | 93.8 | |
94.8 | 94.7 |
Table 6 Forgery localization performance with
算子 | Acc | IoU |
---|---|---|
92.4 | 92.5 | |
89.7 | 89.6 | |
91.2 | 91.0 | |
93.9 | 93.8 | |
94.8 | 94.7 |
算子 | Acc | IoU |
---|---|---|
92.8 | 92.6 | |
94.3 | 94.2 | |
93.7 | 93.5 | |
94.8 | 94.7 |
Table 7 Forgery localization performance with
算子 | Acc | IoU |
---|---|---|
92.8 | 92.6 | |
94.3 | 94.2 | |
93.7 | 93.5 | |
94.8 | 94.7 |
[1] | Wang T C, Liu M Y, Zhu J Y, et al. High-resolution image synthesis and semantic manipulation with conditional gans[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 8798-8807. |
[2] | Dhariwal P, Nichol A. Diffusion models beat gans on image synthesis[J]. Advances in Neural Information Processing Systems, 2021, 34: 8780-8794. |
[3] | Mirsky Y, Lee W K. The creation and detection of deepfakes: a survey[J]. ACM Computing Surveys (CSUR), 2021, 54(1): 1-41. |
[4] | Le T N, Nguyen H H, Yamagishi J, et al. Openforensics: large-scale challenging dataset for multi-face forgery detection and segmentation in-the-wild[C]// IEEE/CVF International Conference on Computer Vision. Montreal, 2021: 10117-10127. |
[5] | Agarwal A, Ratha N. Deepfake Catcher: can a simple fusion be effective and outperform complex DNNs?[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, 2024: 3791-3801. |
[6] | He K M, Gkioxari G, Dollár P, et al. Mask r-CNN[C]// IEEE International Conference on Computer Vision. Venice, 2017: 2961-2969. |
[7] | Zhou P, Han X T, Morariu V I, et al. Learning rich features for image manipulation detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 1053-1061. |
[8] | Fu J, Liu J, Tian H J, et al. Dual attention network for scene segmentation[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, 2019: 3146-3154. |
[9] | Mao A Q, Mohri M, Zhong Y T. Cross-entropy loss functions: theoretical analysis and applications[C]// The 40th International Conference on Machine Learning. Honolulu, 2023: 23803-23828. |
[10] | Ross T Y, Dollár G. Focal loss for dense object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 2980-2988. |
[11] | Kumar A, Guo Y L, Huang X Y, et al. SeaBird: segmentation in bird's view with dice loss improves monocular 3D detection of large objects[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, 2024: 10269-10280. |
[12] | Wu H W, Zhou J T, Zhang S L, et al. Exploring spatial-temporal features for deepfake detection and localization[EB/OL].(2022-10-28) [2024-08-13]. . |
[13] | Zhou T F, Wang W G, Liang Z Y, et al. Face forensics in the wild[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, 2021: 5778-5788. |
[14] | Chen Z X, Sun K, Zhou Z Y, et al. DiffusionFace: towards a comprehensive dataset for diffusion-based face forgery analysis[EB/OL]. (2024-03-27) [2024-08-13]. . |
[15] | Selvaraju R R, Cogswell M, Das A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[EB/OL]. (2024-03-27) [2024-08-13]. . |
[16] | Chollet F. Xception: deep learning with depth wise separable convolutions[C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 1251-1258. |
[17] | Chai L, Bau D, Lim S N, et al. What makes fake images detectable? understanding properties that generalize[C]// European Conference on Computer Vision. Glasgow, 2020: 103-120. |
[18] | Guo X, Liu X H, Ren Z Y, et al. Hierarchical fine-grained image forgery detection and localization[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, 2023: 3155-3165. |
[19] | Țânțaru D C, Oneață E, Oneață D. Weakly-supervised deepfake localization in diffusion-generated images[C]//IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, 2024: 6258-6268. |
[20] | Huang Y H, Xu J F, Wang R, et al. Fakelocator: robust localization of GAN-based face manipulations[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 2657-2672. |
[21] | Loshchilov I. Decoupled weight decay regularization[EB/OL].(2017-11-14) [2024-08-13].. |
[22] | Jiang L M, Li R, Wu W, et al. Deeperforensics-1.0: a large-scale dataset for real-world face forgery detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, 2020: 2889-2898. |
[1] | Peng SHAN, Lin ZHANG, Hong-ming XIAO, Yu-liang ZHAO. CT Diagnosis Method for Coronavirus Pneumonia with Integrated Multi-scale Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1673-1679. |
[2] | Xiao-peng SHA, Jia-qi CAO, Wen-jing LI, Ye QIN. Three-Dimensional Reconstruction Method of Monocular Video Image Sequences [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1680-1687. |
[3] | Shu-hua MA, Li-zhen LI, Han-min QIN, Xiao-peng SHA. Improved Surface Defects Detection Algorithm for Aluminum Profiles Based on PP-PicoDet-XS [J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1557-1564. |
[4] | Ji-hong LIU, Xi-xiong HUANG. Face Inpainting Model Based on Denoising Diffusion Probability Models [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1227-1234. |
[5] | Wei-wei LIU, Jia-he QIU, Guang-da HU, Ze-yuan LIU. Surface Damage Detection Method for Retired Shaft Parts Based on Improved YOLOv5 [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1002-1010. |
[6] | Yuan MA, Li-huang SHE, Jia-wei LI, Xi-rong BAO. Adaptive Graph Convolutional 3D Point Cloud Recognition Algorithm Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 786-792. |
[7] | Jin-lin CHEN, Pei-xin YUAN. Hybrid Denoising Algorithm for Medical CT Sequence Images [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 464-473. |
[8] | Hu FENG, Ke-chen SONG, Wen-qi CUI, Yun-hui YAN. Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 354-360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||