Controllable Preparation of α-Fe2O3 Particles with Different Morphology
HU Jian-she1, SUN Nan1, LI Song2, QIN Gao-wu2
1.School of Sciences, Northeastern University, Shenyang 110819, China; 2. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China.
HU Jian-she, SUN Nan, LI Song, QIN Gao-wu. Controllable Preparation of α-Fe2O3 Particles with Different Morphology[J]. Journal of Northeastern University:Natural Science, 2015, 36(9): 1260-1264.
[1]Jain G,Balasubramanian M.Structural studies of lithium intercalation in a nanocrystalline α-Fe2O3 compound[J].Chemistry of Materials,2006,18(2):423-434. [2]Liang B,Yao Q.Enhanced degradation of azo dye alizarin yellow in a combined process of iron-carbon microelectrolysis and aerobic bio-contact oxidation[J].Environmental Science and Pollution Research,2012,19(5):1385-1391. [3]Murugandham M,Amutha R,Ahmmad B.Self-assembled fabrication of superparamagnetic highly stable mesoporous amorphous iron oxide[J].Journal of Physical Chemistry C,2010,114(51):22493-22501. [4]Fu Y Y,Wang R M.Synthesis of large arrays of aligned α-Fe2O3 nanowires[J].Chemical Physics Letters,2003,379(3/4):373-379. [5]Sun Y K,Duan L.An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application[J].Journal of Magnetism and Magnetic Materials,2005,285(1):65-70. [6]Tang B,Wang G L.Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods[J].Inorganic Chemistry,2006,45(13):5196-5200. [7]Davydov A,Chuang K T.Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces[J].Journal of Physical Chemistry B,1998,102(24):4745-4752. [8]Liu X M,Fu S Y.Preparation and characterization of shuttle-like α-Fe2O3 nanoparticles by supermolecular template[J].Journal of Solid State Chemistry,2005,178(9):2798-2803. [9]Zhan S H,Chen D R.Facile fabrication of long α-Fe2O3,α-Fe and γ-Fe2O3 hollow fibers using sol-gel combined co-elecrospinning technology [J].Journal of Colloid and Interface Science,2007,308(1):265-270. [10]Arbain R,Othman M.Preparation of iron oxide nanoparticles by mechanical milling [J].Minerals Engineering,2011,24(1):1-9.(上接第1259页)氏体相变,退火时马氏体发生逆相变,转变成奥氏体和铁素体;因为铝的加入会抑制渗碳体的析出,所以退火过程中,碳元素会很快地扩散到奥氏体中,退火10min后的实验钢即能得到体积分数为50.3%的残余奥氏体.2) 随着退火时间的增加,奥氏体稳定性随其体积的增大而降低,冷却过程中部分奥氏体发生相变,转变成马氏体,提高了抗拉强度.退火时间影响了实验钢中奥氏体含量.3) 实验钢的力学性能和退火后奥氏体的体积分数有关,奥氏体的体积分数越高,强塑积越高;退火10min后,残余奥氏体体积分数最高,抗拉强度达到765MPa,断后延伸率达到49.1%.4) 实验钢变形过程中发生TRIP效应,残余奥氏体转变成马氏体;退火10min后马氏体相变最为明显,奥氏体的体积分数由变形前的50.3%降低到变形后的11%,奥氏体转化率为78%.