EEG-Based Feature Recognition of Stereoscopic Video Acceleration
SHEN Li-li1, GENG Xiao-quan1, XU Li-sheng2
1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072,China; 2. School of Medicine & Biological Information Engineering, Northeastern University, Shenyang 110169, China.
[1]Yano S,Emoto M,Mitsuhashi T.Two factors in visual fatigue caused by stereoscopic HDTV images[J].Displays,2004,25(4):141-150. [2]Jung Y J,Lee S I,Sohn H,et al.Visual comfort assessment metric based on salient object motion[J].Journal of Electronic Imaging,2012,21(1):011008. [3]Speranza F,Tam W J,Renaud R,et al.Effect of disparity and motion on visual comfort of stereoscopic images[C]//Proceedings of SPIE.San Jose,2006:6055. [4]Shen L L,Du W R,Wang C.Event-related potentials measurement of perception to 3D motion in depth[J].China Communications,2015,12(5):93-96. [5]Park C,Looney D,Rehman N U,et al.Classification of motor imagery BCI using multivariate empirical mode decomposition[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2013,21(1):10-22. [6]Huang N E,Zheng S,Steven R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear non-stationary time series analysis[J].Proceedings of the Royal Society A—Mathematical Physical and Engineering Sciences,1998,454(1971):903-995. [7]Rehman N,Mandic D P.Multivariate empirical mode decomposition[J].Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences,2010,466(2117):1291-1302. [8]Rehman N,Mandic D P.Filter bank property of multivariate empirical mode decomposition[J].IEEE Transactions on Signal Processing,2011,59(5):2421-2426. [9]Gaur P,Pachori R B,Wang H,et al.A multivariate empirical mode decomposition based filtering for subject independent BCI[C]//The 27th Irish Signals and Systems Conference(ISSC).Derry:IEEE,2016:1-7. [10]韩笑,佘青山,高云园,等.基于NA-MEMD和互信息的脑电特征提取方法[J].传感技术学报,2016,29(8),1140-1148.(Han Xiao,She Qing-shan,Gao Yun-yuan,et al.Feature extraction of EEG based on NA-MEMD and mutual imformatin[J].Chinese Journal of Sensors and Actuators,2016,29(8):1140-1148.) [11]Du S P,Masia B,Hu S M,et al.A metric of visual comfort for stereoscopic motion[J].ACM Transactions on Graphics,2013,32(6):1-9. [12]Huang W P,Zeng J,Wang Z Y,et al.Partial noise assisted multivariate EMD:an improved noise assisted method for multivariate signals decomposition[J].Biomedical Signal Processing and Control,2017,36:205-220. [13]She Q S,Ma Y L,Meng M,et al.Noise assisted MEMD based relevant IMFs identification and EEG classification[J].Journal of Central South University,2017,24(3):599-608. [14]Li M A,Ma J Y,Jia S M.Optimal combination of channels selection based on common spatial pattern algorithm[C]//IEEE International Conference on Mechatronics and Automation.Beijing:IEEE,2011:295-300. [15]Chen C X,Li K,Wu Q Y,et al.EEG-based detection and evaluation of fatigue caused by watching 3DTV[J].Displays,2013,34(2):81-88. [16]Malik A S,Khairuddin R N,Amin H U,et al. EEG based evaluation of stereoscopic 3D displays for viewer discomfort[J].Biomedical Engineering Online,2015,14(12):21.(上接第1380页) [2]Hu W,Yang J,Bai L,et al.A new approach for vehicle color recognition based on specular-free image[C]//Proceedings of SPIE.Shanghai:The International Society for Optical Engineering,2013:9067. [3]Zhang B.Reliable classification of vehicle types based on cascade classifier ensembles[J]. IEEE Transactions on Intelligent Transportation Systems,2013,14(1):322-332. [4]Zhang Z,Tan T,Huang K,et al.Three-dimensional deformable-model-based localization and recognition of road vehicles[J].IEEE Transactions on Image Processing,2012,21(1):1-13. [5]Pepik B,Stark M,Gehler P,et al.Multi-view and 3D deformable part models[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,37(11):2232-2245. [6]Lin Y L,Morariu V I,Hsu W,et al.Jointly optimizing 3D model fitting and fine-grained classification[C]//European Conference on Computer Vision.Zurich,2014:466-480. [7]Hu C,Bai X,Qi L,et al.Vehicle color recognition with spatial pyramid deep learning[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(5):2925-2934. [8]Liu M,Yu C,Ling H,et al.Hierarccal joint CNN-based models for fine-grained cars recognition[C]//International Conference on Cloud Computing & Security.Singapore,2016:337-347. [9]Rachmadi R F,Purnama I.Vehicle color recognition using convolutional neural network[J].ArXiv Preprint ArXiv,2015,1510:07391. [10]Yang L,Luo P,Loy C C,et al.A large-scale car data set for fine-grained categorization and verification[C]//IEEE Conference on Computer Vision and Pattern Recognition.Boston,2015:3973-3981. [11]Naikal N,Yang A Y,Sastry S S.Informative feature selection for object recognition via sparse PCA[C]//International Conference on Computer Vision.Barcelona,2011:818-825. [12]Wu L,Shen C,Hengel A V D.Deep linear discriminant analysis on fisher networks:a hybrid architecture for person re-identification[J].Pattern Recognition,2017,65:238-250. [13]Gawehns D,Wilderjans T F,Putten C M V.The statistical analysis of neuronal data:comparing algorithms for independent component analysis[J].ISME Journal,2016,7(2):317-336. [14]Chen S B,Wang J,Liu C Y,et al.Two-dimensional discriminant locality preserving projection based on 1-norm maximization[J].Pattern Recognition Letters,2017,87:147-154. [15]吴成东,樊玉泉,张云洲,等.基于改进KPCA算法的车牌字符识别方法[J].东北大学学报(自然科学版),2008,29(5):629-632.(Wu Cheng-dong,Fan Yu-quan,Zhang Yun-zhou,et al.License plate recognition method based on improved KPCA algorithm[J].Journal of Northeastern University(Natural Science),2008,29(5):629-632.) [16]Lee D D,Seung H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791. [17]Liu Q.Kernel local sparse representation based classifier[J].Neural Processing Letters,2016,60(1):1684-1695.