Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (1): 93-100.DOI: 10.12068/j.issn.1005-3026.2024.01.012
• Resources & Civil Engineering • Previous Articles Next Articles
Jun GUO1, Wan-zhong YIN1, Bin YANG2, Zhang-lei ZHU3
Received:
2022-08-02
Online:
2024-01-15
Published:
2024-04-02
CLC Number:
Jun GUO, Wan-zhong YIN, Bin YANG, Zhang-lei ZHU. Effect of Acid Etching on the Floatability of Dolomite and Its Mechanism of Action[J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 93-100.
序号 | 浮选动力学模型 | 公式 |
---|---|---|
模型1 | 经典一级 模型[ | |
模型2 | 一级矩阵分布模型[ | |
模型3 | 二级动力学 模型[ | |
模型4 | 二级矩阵分布模型[ |
Table 1 Flotation kinetic models
序号 | 浮选动力学模型 | 公式 |
---|---|---|
模型1 | 经典一级 模型[ | |
模型2 | 一级矩阵分布模型[ | |
模型3 | 二级动力学 模型[ | |
模型4 | 二级矩阵分布模型[ |
试样 | Ra/nm | Rq/nm | 粗糙度 | 比表面积 |
---|---|---|---|---|
nm | m2·g-1 | |||
酸蚀前 | 0.163 | 0.268 | 0.2~1.3 | 0.324 |
酸蚀后 | 0.216 | 0.370 | 0.5~2.2 | 0.386 |
Table 2 Surface roughness and specific surface area of dolomite before and after acid etching
试样 | Ra/nm | Rq/nm | 粗糙度 | 比表面积 |
---|---|---|---|---|
nm | m2·g-1 | |||
酸蚀前 | 0.163 | 0.268 | 0.2~1.3 | 0.324 |
酸蚀后 | 0.216 | 0.370 | 0.5~2.2 | 0.386 |
试样 | Ca2p | Mg1s | C1s | O1s |
---|---|---|---|---|
酸蚀前 | 6.71 | 1.97 | 36.61 | 54.71 |
酸蚀后 | 9.60 | 4.22 | 38.24 | 47.94 |
Table 3 XPS analysis results of dolomite
试样 | Ca2p | Mg1s | C1s | O1s |
---|---|---|---|---|
酸蚀前 | 6.71 | 1.97 | 36.61 | 54.71 |
酸蚀后 | 9.60 | 4.22 | 38.24 | 47.94 |
酸蚀前 | 酸蚀后 | 酸蚀前+油酸钠 | 酸蚀后+油酸钠 |
---|---|---|---|
32.18 | 25.71 | 72.67 | 88.35 |
Table 4 Contact angle of dolomite before and after acid etching
酸蚀前 | 酸蚀后 | 酸蚀前+油酸钠 | 酸蚀后+油酸钠 |
---|---|---|---|
32.18 | 25.71 | 72.67 | 88.35 |
1 | Yekeler M, Ulusoy U.Characterisation of surface roughness and wettability of salt‐type minerals:calcite and barite[J].Mineral Processing and Extractive Metallurgy,2004,113(3):145-152. |
2 | Ulusoy U, Yekeler M.Correlation of the surface roughness of some industrial minerals with their wettability parameters[J].Chemical Engineering and Processing:Process Intensification,2005,44(5):555-563. |
3 | Yekeler M, Ulusoy U, Hiçyılmaz C.Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability[J].Powder Technology,2004,140(1/2):68-78. |
4 | Xia W C, Ni C, Xie G Y.The influence of surface roughness on wettability of natural/gold‐coated ultra‐low ash coal particles[J].Powder Technology,2016,288:286-290. |
5 | Xing Y W, Zhang Y F, Ding S H,et al.Effect of surface roughness on the detachment between bubble and glass beads with different contact angles[J].Powder Technology,2020,361:812-816. |
6 | Hassas V B, Caliskan H, Guven O,et al.Effect of roughness and shape factor on flotation characteristics of glass beads[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,492:88-99. |
7 | Tong Z Y, Liu L, Yuan Z T,et al.The effect of comminution on surface roughness and wettability of graphite particles and their relation with flotation[J].Minerals Engineering,2021,169:106959. |
8 | Wu H Q, Fang S, Shu K Q,et al.Selective flotation and adsorption of ilmenite from titanaugite by a novel method:ultrasonic treatment[J].Powder Technology,2020,363:38-47. |
9 | Zhang N N, Ejtemaei M, Nguyen A V,et al.XPS analysis of the surface chemistry of sulfuric acid‐treated kaolinite and diaspore minerals with flotation reagents[J].Minerals Engineering,2019,136:1-7. |
10 | Li H X, Chai W C, Cao Y J,et al.Flotation enhancement of low‐grade bauxite using oxalic acid as surface pretreatment agent[J].Applied Surface Science,2022,577:151964. |
11 | Zhu G L, Zhao Y H, Zheng X Y,et al.Surface features and flotation behaviors of spodumene as influenced by acid and alkali treatments[J].Applied Surface Science,2020,507:145058. |
12 | Cao S H, Yin W Z, Yang B,et al.Insights into the influence of temperature on the adsorption behavior of sodium oleate and its response to flotation of quartz[J].International Journal of Mining Science and Technology,2022,32(2):399-409. |
13 | 付亚峰,杨晓峰,印万忠,等.木质素磺酸钙对水镁石浮选中蛇纹石的抑制机理[J].中南大学学报(自然科学版),2022,53(2):371-378. |
Fu Ya‑feng, Yang Xiao‑feng, Yin Wan‑zhong,et al.Inhibitory role of calcium lignosulfonate on serpentine during brucite flotation[J].Journal of Central South University (Science and Technology),2022,53(2):371-378. | |
14 | 姚金,印万忠,王余莲,等.油酸钠浮选体系中菱镁矿与白云石和石英的交互影响[J].东北大学学报(自然科学版),2013,34(9):1330-1334. |
Yao Jin, Yin Wan‑zhong, Wang Yu‑lian,et al.Interactive effect of dolomite and quartz on the floatability of magnesite in sodium oleate flotation system[J].Journal of Northeastern University (Natural Science),2013,34(9):1330-1334. | |
15 | Hassanzadeh A, Huu H D, Brockmann M.Assessment of flotation kinetics modeling using information criteria; case studies of elevated‐pyritic copper sulfide and high‐grade carbonaceous sedimentary apatite ores[J].Journal of Dispersion Science and Technology,2020,41(7):1083-1094. |
16 | Zhang H J, Liu J T, Cao Y J,et al.Effects of particle size on lignite reverse flotation kinetics in the presence of sodium chloride[J].Powder Technology,2013,246:658-663. |
17 | Stanojlović R D, Sokolović J M.A study of the optimal model of the flotation kinetics of copper slag from copper mine BOR[J].Archives of Mining Sciences,2014,59(3):821-834. |
18 | Ruiz‑Cabello F M, Trefalt G, Csendes Z,et al.Predicting aggregation rates of colloidal particles from direct force measurements[J].The Journal of Physical Chemistry B,2013,117(39):11853-11862. |
19 | Xu M Q.Modified flotation rate constant and selectivity index[J].Minerals Engineering,1998,11(3):271-278. |
20 | Polat M, Chander S.First‐order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants[J].International Journal of Mineral Processing,2000,58(1/2/3/4):145-166. |
21 | Azizi A.A study on the modified flotation parameters and selectivity index in copper flotation[J].Particulate Science and Technology,2017,35(1):38-44. |
22 | Zhu Z L, Wang D H, Yang B,et al.Water droplets and air bubbles at magnesite nano‐rough surfaces:analysis of induction time,adhesion and detachment using a dynamic microbalance[J].Minerals Engineering,2020,155:106449. |
23 | Zhu Z L, Yin W Z, Wang D H,et al.The role of surface roughness in the wettability and floatability of quartz particles[J].Applied Surface Science,2020,527:146799. |
[1] | ZHAO Xu, YIN Wan-zhong, YAO Jin, ZHU Zhang-lei. Effect of Roughness on Floatability of Dolomite in Sodium Oleate System and Its Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1188-1194. |
[2] | ZHANG Jia-hao, ZOU Ping, WEI Shi-yu, LIANG Fu-qiang. Experimental Study on Single-Excitation 3-D Ultrasonic Turning Technology [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1152-1159. |
[3] | YANG Jin-jin, WANG Zhe-chao, QIAO Li-ping, LI Wei. Analysis of Evolution Characteristics and Influencing Factors of Vortex Structure in Rough-Walled Fracture [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 697-704. |
[4] | FANG Rui, ZOU Ping, DUAN Jing-wei, WEI Shi-yu. Experimental Research on Friction Reduction Characteristics and Surface Quality of 3D Ultrasonic Vibration Assisted Turning [J]. Journal of Northeastern University(Natural Science), 2023, 44(2): 233-241. |
[5] | SUN Yao, TANG Ben-jia, GONG Ya-dong, LI Si-hui. Preparation Method and Experimental Study of Array Microholes on the Surface of Nickel-Based Single Crystal Superalloy [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1719-1725. |
[6] | ZHOU Xiao-hong, GAO Shu-ling, MENG Ling-guo, ZHAO Qiang. Influence of Wall Roughness on Slurry Flow and Particles Separation Behaviors in Spirals [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1769-1777. |
[7] | JIANG Shi-jie, HU Ke, CHEN Pi-feng, ZHAN Ming. Theoretical and Experimental Investigation on the Three-Dimensional Surface Roughness of Fused Filament Fabrication Products [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1290-1297. |
[8] | WEN Xue-long, HAN Feng-bing, GONG Ya-dong, HUANG Xiong-jun. Effect of Deposition Time on the Surface Properties of Vacuum Ion Plating TiC Coated Micro-grinding Tools [J]. Journal of Northeastern University(Natural Science), 2022, 43(6): 857-863. |
[9] | WEN Xue-long, WANG Cheng-bao, GONG Ya-dong, SUN Fu-qiang. Preparation of Coated Micro-grinding Tools and Experimental Research on Grinding Surface Quality [J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 681-688. |
[10] | WEN Xue-long, LI Jia-yu, LI Xin-yan. Influencing Factors of Grinding Surface Quality of TiC-Coated Micro-grinding Tools [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 534-540. |
[11] | ZHOU Yun-guang, TIAN Chuan-chuan, MA Lian-jie, BI Chang-bo. Experimental Study on Surface Quality in Micro-scale Grinding of Zirconia Ceramics [J]. Journal of Northeastern University(Natural Science), 2022, 43(1): 83-88. |
[12] | ZHAO Chun-yu, CHENG Da-zhong, GENG Hao-bo. Research on 2-D Surface Topography Detection Method of Turning Workpieces [J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1299-1306. |
[13] | JIANG Shi-jie, HU Ke, CHEN Pi-feng, SIYAJEU Yannick. Theoretical Model and Experimental Verification of Surface Roughness of Fused Filament Fabrication Plates [J]. Journal of Northeastern University(Natural Science), 2021, 42(7): 980-986. |
[14] | SUN Wen-han, LIU Wen-gang, YANG Ting, DAI Shu-juan. Effect of TX-100 on Flotation of Magnesite and Dolomite Using NaOL as Collector [J]. Journal of Northeastern University(Natural Science), 2021, 42(2): 226-231. |
[15] | JIAO An-yuan, ZHANG Guo-fu, DING Hao-dong, LIU Wei-jun. Experiment of Magnetic Abrasive Finishing on TC4 Titanium Alloy Hole [J]. Journal of Northeastern University Natural Science, 2020, 41(9): 1304-1310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||