
Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (6): 786-792.DOI: 10.12068/j.issn.1005-3026.2024.06.004
• Information & Control • Previous Articles
Yuan MA, Li-huang SHE(
), Jia-wei LI, Xi-rong BAO
Received:2023-10-03
Online:2024-06-15
Published:2024-09-18
Contact:
Li-huang SHE
About author:SHE Li-huang, E-mail: shelihuang@ise.neu.edu.cnCLC Number:
Yuan MA, Li-huang SHE, Jia-wei LI, Xi-rong BAO. Adaptive Graph Convolutional 3D Point Cloud Recognition Algorithm Based on Attention Mechanism[J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 786-792.
| 方法 | 输入 | 点数量 | mAcc/% | OA/% |
|---|---|---|---|---|
| VoxNet | voxel | — | 83.0 | 85.9 |
| PointNet | xyz | 1 024 | 86.0 | 89.2 |
| PointNet++ | xyz | 1 024 | — | 90.7 |
| PointNet | xyz | 5 120 | — | 91.9 |
| PointCNN | xyz | 1 024 | 88.1 | 92.5 |
| KPConv | xyz | 7 168 | — | 92.9 |
| DGCNN | xyz | 1 024 | — | 92.9 |
| Point Trans | xyz | 1 024 | — | 92.8 |
| PCT | xyz | 1 024 | — | 93.2 |
| PointNext | xyz | 1 024 | — | 93.2 |
| 本文 | xyz | 1 024 | 90.7 | 93.5 |
Table 1 Classification results based on ModelNet40 dataset
| 方法 | 输入 | 点数量 | mAcc/% | OA/% |
|---|---|---|---|---|
| VoxNet | voxel | — | 83.0 | 85.9 |
| PointNet | xyz | 1 024 | 86.0 | 89.2 |
| PointNet++ | xyz | 1 024 | — | 90.7 |
| PointNet | xyz | 5 120 | — | 91.9 |
| PointCNN | xyz | 1 024 | 88.1 | 92.5 |
| KPConv | xyz | 7 168 | — | 92.9 |
| DGCNN | xyz | 1 024 | — | 92.9 |
| Point Trans | xyz | 1 024 | — | 92.8 |
| PCT | xyz | 1 024 | — | 93.2 |
| PointNext | xyz | 1 024 | — | 93.2 |
| 本文 | xyz | 1 024 | 90.7 | 93.5 |
| 方法 | mAcc | OA |
|---|---|---|
| PointNet | 63.4 | 68.2 |
| PointNet++ | 75.4 | 77.9 |
| PointCNN | 75.1 | 78.5 |
| DGCNN | 73.6 | 78.1 |
| PRANet[ | 79.1 | 82.1 |
| 本文 | 79.3 | 82.7 |
Table 2 Classification results on the ScanObjectNN dataset
| 方法 | mAcc | OA |
|---|---|---|
| PointNet | 63.4 | 68.2 |
| PointNet++ | 75.4 | 77.9 |
| PointCNN | 75.1 | 78.5 |
| DGCNN | 73.6 | 78.1 |
| PRANet[ | 79.1 | 82.1 |
| 本文 | 79.3 | 82.7 |
| 算法 | mcIoU | mIoU |
|---|---|---|
| PointNet | 80.4 | 83.7 |
| PointNet++ | 81.9 | 85.1 |
| PointCNN | 84.6 | 86.1 |
| DGCNN | 82.3 | 85.2 |
| PRANet | 85.1 | 86.4 |
| 本文 | 84.8 | 86.7 |
Table 3 Segmentation results on ShapeNetPart dataset
| 算法 | mcIoU | mIoU |
|---|---|---|
| PointNet | 80.4 | 83.7 |
| PointNet++ | 81.9 | 85.1 |
| PointCNN | 84.6 | 86.1 |
| DGCNN | 82.3 | 85.2 |
| PRANet | 85.1 | 86.4 |
| 本文 | 84.8 | 86.7 |
| Block | mAcc | OA |
|---|---|---|
| 1 | 87.9 | 90.1 |
| 2 | 89.3 | 92.3 |
| 3 | 90.7 | 93.3 |
| 4 | 89.5 | 92.7 |
Table 4 Classification accuracy of different numbers of ResG Block on ModelNet40 dataset
| Block | mAcc | OA |
|---|---|---|
| 1 | 87.9 | 90.1 |
| 2 | 89.3 | 92.3 |
| 3 | 90.7 | 93.3 |
| 4 | 89.5 | 92.7 |
| K | mAcc | OA |
|---|---|---|
| 10 | 89.9 | 92.9 |
| 20 | 90.7 | 93.3 |
| 30 | 89.5 | 92.1 |
| 40 | 86.8 | 89.7 |
Table 5 Classification accuracy using the number
| K | mAcc | OA |
|---|---|---|
| 10 | 89.9 | 92.9 |
| 20 | 90.7 | 93.3 |
| 30 | 89.5 | 92.1 |
| 40 | 86.8 | 89.7 |
| 算子 | mAcc | OA |
|---|---|---|
| MLP | 86.5 | 88.3 |
| MLP+Pooling | 87.9 | 90.5 |
| Scalar | 89.5 | 92.2 |
| 本文 | 90.7 | 93.3 |
Table 6 Classification accuracy using different
| 算子 | mAcc | OA |
|---|---|---|
| MLP | 86.5 | 88.3 |
| MLP+Pooling | 87.9 | 90.5 |
| Scalar | 89.5 | 92.2 |
| 本文 | 90.7 | 93.3 |
| 算子 | mAcc | OA |
|---|---|---|
| PointNet | 86.0 | 89.2 |
| A-GConv+PointNet | 87.5 | 90.5 |
| DGCNN | — | 92.9 |
| A-GConv+DGCNN | — | 93.1 |
Table 7 Classification accuracy of network after
| 算子 | mAcc | OA |
|---|---|---|
| PointNet | 86.0 | 89.2 |
| A-GConv+PointNet | 87.5 | 90.5 |
| DGCNN | — | 92.9 |
| A-GConv+DGCNN | — | 93.1 |
| 1 | Riegler G, Ulusoy A O, Geiger A.OctNet:learning deep 3D representations at high resolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,2017:6620-6629. |
| 2 | Klokov R, Lempitsky V.Escape from cells:deep KD-networks for the recognition of 3D point cloud models[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice,2017:863-872. |
| 3 | Charles R Q, Hao S, Mo K C,et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,2017:77-85. |
| 4 | Shen Y R, Feng C, Yang Y Q,et al.Mining point cloud local structures by kernel correlation and graph pooling[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:4548-4557. |
| 5 | Wang Y, Sun Y B, Liu Z W,et al.Dynamic graph CNN for learning on point clouds[J].ACM Transactions on Graphics,2019,38(5):1-12. |
| 6 | Devlin J, Chang M W, Lee K,et al.BERT:pre‐training of deep bidirectional transformers for language understanding[EB/OL].2018:arXiv:1810.04805.. |
| 7 | Hu H, Zhang Z, Xie Z D,et al.Local relation networks for image recognition[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,2019:3463-3472. |
| 8 | Zhao H S, Jia J Y, Koltun V.Exploring self‐attention for image recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle,2020:10073-10082. |
| 9 | Zhao H S, Jiang L, Jia J Y,et al.Point transformer[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV).Montreal,2021:16239-16248. |
| 10 | Liu Y C, Fan B, Xiang S M,et al.Relation‐shape convolutional neural network for point cloud analysis[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,2019:8887-8896. |
| 11 | Wu Z R, Song S R, Khosla A,et al.3D ShapeNets:a deep representation for volumetric shapes[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston,2015:1912-1920. |
| 12 | Loshchilov I, Hutter F.SGDR:stochastic gradient descent with warm restarts[EB/OL].2016:arXiv:1608.03983.. |
| 13 | Zhou Y, Tuzel O.VoxelNet:end‐to‐end learning for point cloud based 3D object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:4490-4499. |
| 14 | Li Y, Bu R, Sun M,et al.PointCNN:convolution on x‐transformed points[J].Advances in Neural Information Processing Systems,2018. |
| 15 | Thomas H, Qi C R, Deschaud J E,et al.KPConv:flexible and deformable convolution for point clouds[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,2019:6410-6419. |
| 16 | Guo M H, Cai J X, Liu Z N,et al.PCT:point cloud transformer[J].Computational Visual Media,2021,7(2):187-199. |
| 17 | Qian G, Li Y, Peng H,et al.PointNext:revisiting pointnet++ with improved training and scaling strategies[J].Advances in Neural Information Processing Systems,2022,35:23192-23204. |
| 18 | Uy M A, Pham Q H, Hua B S,et al.Revisiting point cloud classification:a new benchmark dataset and classification model on real‐world data[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul,2019:1588-1597. |
| 19 | Cheng S L, Chen X W, He X W,et al.PRANet:point relation‑aware network for 3D point cloud analysis[J].IEEE Transactions on Image Processing,2021,30:4436-4448. |
| [1] | Li-xin GUO, Su-tao BI, Ming-yang ZHAO. State Detection Algorithm of Manipulator Based on Improved YOLOv4 Lightweight Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 769-775. |
| [2] | Hu FENG, Ke-chen SONG, Wen-qi CUI, Yun-hui YAN. Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 354-360. |
| [3] | Ying SUN, Ya-ru ZHOU, Xue-ying ZHANG. Speech Emotion Recognition Fusing Functional Paralanguage Proportion Coefficient [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 40-48. |
| [4] | JIANG Yang, LIU Cheng, DING Qi-chuan, WANG Li. Segmentation of COVID-19 CT Images Based on Dual Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1259-1268. |
| [5] | ZHOU Song, GAO Tian-han. EEG Recognition Method for Epileptic Patients Based on RNN Model with Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1098-1103. |
| [6] | DING Qi-chuan, WANG Li, LIU Cheng. Classification of Pulmonary Nodule by Combining Long-Distance Channel Attention and Pathological Feature [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 476-485. |
| [7] | CHEN Cheng, SHI Pei-xin, WANG Zhan-sheng, JIA Peng-jiao. Shield Load Prediction Method Based on Deep Learning with Multiattention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1631-1638. |
| [8] | LIN Qing-yang, CHEN Xiao-fang, XIE Yong-fang. An Superheat Identification Method in Aluminium Electrolysis Based on Residual Convolutional Self-Attention Neural Network [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 8-17. |
| [9] | LIU Yang, YAN Dong-mei, MENG Fan-wei. Improved Two-Branch Person Re-identification Algorithm Based on Transformer [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 26-32. |
| [10] | DAI Yin, LIU Wei-bin, DONG Xin-yang, SONG Yu-meng. U-Net CSF Cells Segmentation Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 944-950. |
| [11] | YU Zhe-zhou, LIU Yan, LIU Yuan-ning. Improved Iris Locating Algorithm Based on YOLOV3 [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 496-501. |
| [12] | LI Da-peng, ZHAO Qi-hui, XING Tie-jun, ZHAO Da-zhe. Prison Term Prediction of Judicial Cases Based on Hierarchical Attentive Recurrent Neural Network [J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 344-349. |
| [13] | LIU Fang, QIAO Jian-zhong, DAI Qin, SHI Xiang-bin. Skeleton-based Action Recognition Method with Two-Stream Multi-relational GCNs [J]. Journal of Northeastern University(Natural Science), 2021, 42(6): 768-774. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||