| [1] |
Thompson Y, Gonzalez-Gutierrez J, Kukla C, et al. Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel[J]. Additive Manufacturing, 2019, 30: 100861.
|
| [2] |
Suwanpreecha C, Manonukul A. A review on material extrusion additive manufacturing of metal and how it compares with metal injection moulding[J]. Metals, 2022, 12(3): 429.
|
| [3] |
Gloeckle C, Konkol T, Jacobs O, et al. Processing of highly filled polymer-metal feedstocks for fused filament fabrication and the production of metallic implants[J]. Materials, 2020, 13(19): 4413.
|
| [4] |
Shaikh M Q, Nath S D, Akilan A A, et al. Investigation of patient-specific maxillofacial implant prototype development by metal fused filament fabrication (MF3) of Ti-6Al-4V[J]. Dentistry Journal, 2021, 9(10): 109.
|
| [5] |
Sargini M I M, Masood S H, Palanisamy S, et al. Additive manufacturing of an automotive brake pedal by metal fused deposition modelling[J]. Materials Today: Proceedings, 2021, 45: 4601-4605.
|
| [6] |
果春焕, 严家印, 王泽昌, 等. 金属激光熔丝增材制造工艺的研究进展[J]. 热加工工艺, 2020, 49(16): 5-10.
|
|
Guo Chun-huan, Yan Jia-yin, Wang Ze-chang, et al. Research progress on metal laser fuse additive manufacturing process[J]. Hot Working Technology, 2020, 49(16): 5-10.
|
| [7] |
Zhao C, Parab N D, Li X X, et al. Critical instability at moving keyhole tip generates porosity in laser melting[J]. Science, 2020, 370(6520): 1080-1086.
|
| [8] |
张云舒, 吴斌涛, 赵昀, 等. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80.
|
|
Zhang Yun-shu, Wu Bin-tao, Zhao Yun, et al. Research progress in the numerical simulation of heat and mass transfer during wire arc additive manufacturing[J]. Journal of Mechanical Engineering, 2024, 60(8): 65-80.
|
| [9] |
刘伟, 李素丽, 寇丹阳, 等. 不同扫描速度下金属熔丝增材制造应力应变场分析[J]. 焊接技术, 2023, 52(7): 1-5.
|
|
Liu Wei, Li Su-li, Kou Dan-yang, et al. Analysis of stress-strain field in metal melt additive manufacturing by different scanning speeds[J]. Welding Technology, 2023, 52(7): 1-5.
|
| [10] |
赵沧, 杨源祺, 师博, 等. 金属激光增材制造微观结构和缺陷原位实时监测[J]. 科学通报, 2022, 67(25): 3036-3053.
|
|
Zhao Cang, Yang Yuan-qi, Shi Bo, et al. Operando monitoring microstructures and defects in laser fusion additive manufacturing of metals[J]. Chinese Science Bulletin, 2022, 67(25): 3036-3053.
|
| [11] |
Godec D, Cano S, Holzer C, et al. Optimization of the 3D printing parameters for tensile properties of specimens produced by fused filament fabrication of 17-4PH stainless steel[J]. Materials, 2020, 13(3): 774.
|
| [12] |
Masood S H, Song W Q. Development of new metal/polymer materials for rapid tooling using fused deposition modelling [J]. Materials & Design, 2004, 25(7): 587-594.
|
| [13] |
Ren L Q, Zhou X L, Song Z Y, et al. Process parameter optimization of extrusion-based 3D metal printing utilizing PW-LDPE-SA binder system[J]. Materials, 2017, 10(3): 305.
|
| [14] |
冯建, 张静, 李邦怿, 等. FDM用93W-Ni-Cu/ABS复合丝材的制备及表征[J]. 稀有金属与硬质合金, 2019, 47(5): 19-24, 28.
|
|
Feng Jian, Zhang Jing, Li Bang-yi, et al. Preparation and characterization of 93W-Ni-Cu/ABS composite filaments for FDM process[J]. Rare Metals and Cemented Carbides, 2019, 47(5): 19-24, 28.
|
| [15] |
胡祥芬, 牛富荣, 周哲, 等. 熔融沉积(FDM)工艺参数对SiC陶瓷微观结构和力学性能影响[J]. 硬质合金, 2021, 38(3): 201-210.
|
|
Hu Xiang-fen, Niu Fu-rong, Zhou Zhe, et al. Effect of fused deposition modeling(FDM) process parameters on microstructure and mechanical properties of SiC ceramics[J]. Cemented Carbide, 2021, 38(3): 201-210.
|
| [16] |
张力, 杨现锋, 徐协文, 等. 熔融沉积法3D打印制备氧化锆陶瓷及其力学性能研究[J]. 无机材料学报, 2021, 36(4): 436.
|
|
Zhang Li, Yang Xian-feng, Xu Xie-wen, et al. 3D printed zirconia ceramics via fused deposit modeling and its mechanical properties[J]. Journal of Inorganic Materials, 2021, 36(4): 436.
|
| [17] |
Suwanpreecha C, Manonukul A. On the build orientation effect in as-printed and as-sintered bending properties of 17-4PH alloy fabricated by metal fused filament fabrication[J]. Rapid Prototyping Journal, 2022, 28(6): 1076-1085.
|
| [18] |
Sotomayor M E, Várez A, Levenfeld B. Influence of powder particle size distribution on rheological properties of 316L powder injection moulding feedstocks[J]. Powder Technology, 2010, 200(1/2): 30-36.
|
| [19] |
Fayazbakhsh K, Movahedi M, Kalman J. The impact of defects on tensile properties of 3D printed parts manufactured by fused filament fabrication[J]. Materials Today Communications, 2019, 18: 140-148.
|
| [20] |
Medibew T M. A comprehensive review on the optimization of the fused deposition modeling process parameter for better tensile strength of PLA printed parts[J]. Advances in Materials Science and Engineering, 2022, 2022(1): 5490831.
|
| [21] |
Cojocaru V, Frunzaverde D, Miclosina C O, et al. The influence of the process parameters on the mechanical properties of PLA specimens produced by fused filament fabrication: a review[J]. Polymers, 2022, 14(5): 886.
|
| [22] |
Houshyar S, Shanks R A, Hodzic A. The effect of fiber concentration on mechanical and thermal properties of fiber-reinforced polypropylene composites[J]. Journal of Applied Polymer Science, 2005, 96(6): 2260-2272.
|