| [5] |
结 论
|
|
1 基于铣刀与工件相对运动的数学建模,融合渐开线齿廓理论与等残余高度法,构建了具有严格理论依据的高精度刀具路径规划算法,为切触区域的计算提供了基础.
|
|
2 基于刀齿扫掠面的半球面近似假设,将切触区域严格定义为由 3 条边界曲线约束的局部球面区域.通过引入曲面修剪算法,实现了切触区域的高效精确提取,并计算出切触角度区间.
|
|
3 试验测量结果与仿真数据的高度吻合验证了曲面修剪法在直齿轮铣削切触区域提取中的准确性.计算时间对比显示,该方法在计算效率上具有一定的优越性.
|
| [1] |
Staudt J, Löpenhaus C, Klocke F.Performance of gears manufactured by 5-axis milling[J].Gear Technology,2017,3:58-65.
|
| [2] |
Bouquet J, Hensgen L, Klink A,et al.Fast production of gear prototypes—a comparison of technologies[J].Procedia CIRP,2014,14:77-82.
|
| [3] |
黎柏春,王振宇,张斌,等.球头铣刀切削刃存在差异的切削力系数辨识[J].东北大学学报(自然科学版),2019,40(9):1316-1322.
|
|
Li Bai-chun, Wang Zhen-yu, Zhang Bin,et al.Identification of cutting force coefficients in different cutting edges of ball-end milling cutter[J].Journal of Northeastern University (Natural Science),2019,40(9):1316-1322.
|
| [4] |
董永亨,李淑娟,洪贤涛,等.基于Z-MAP方法的球头铣刀铣削力的建模[J].机械工程学报,2019,55(19):201-212.
|
|
Dong Yong-heng, Li Shu-juan, Hong Xian-tao, et al.Modeling on the milling force of ball-end milling cutter based on Z-MAP method[J].Journal of Mechanical Engineering,2019,55(19):201-212.
|
| [6] |
Wei Z C, Wang M J, Cai Y J, et al.Prediction of cutting force in ball-end milling of sculptured surface using improved Z-map[J].International Journal of Advanced Manufacturing Technology,2013,68(5/6/7/8):1167-1177.
|
| [7] |
Qin S Q, Hao Y P, Zhu L D,et al.CWE identification and cutting force prediction in ball-end milling process[J].International Journal of Mechanical Sciences,2023,239:107863.
|
| [8] |
魏兆成,王敏杰,王学文,等.球头铣刀曲面多轴加工的刀具接触区半解析建模[J].机械工程学报,2017,53(1):198-205.
|
|
Wei Zhao-cheng, Wang Min-jie, Wang Xue-wen,et al.A semi-analytical cutter workpiece engagement model for ball end milling of sculptured surface[J].Journal of Mechanical Engineering,2017,53(1):198-205.
|
| [9] |
董永亨,李淑娟,张倩,等.基于半解析法的球头铣刀静态铣削力的建模[J].机械工程学报,2022,58(11):282-294.
|
|
Dong Yong-heng, Li Shu-juan, Zhang Qian,et al.Modeling on static milling force of ball-end-milling cutters based on semi-analytical method[J].Journal of Mechanical Engineering,2022,58(11): 282-294.
|
| [10] |
Ghorbani M, Movahhedy M R.An analytical model for cutter-workpiece engagement calculation in ball-end finish milling of doubly curved surfaces[J]. International Journal of Advanced Manufacturing Technology,2019,102(5/6/7/8):1635-1657.
|
| [11] |
Yan B L, Xu G F, Lu H,et al.Identification of milling information and cutter-workpiece engagement in five-axis finishing of turbine blades based on NURBS and NC codes[J].Journal of Manufacturing Processes,2023,107:43-56.
|
| [12] |
Yang Y, Zhang W H, Wan M,et al.A solid trimming method to extract cutter-workpiece engagement maps for multi-axis milling[J].International Journal of Advanced Manufacturing Technology,2013,68(9/10/11/12):2801-2813.
|
| [13] |
Boz Y, Erdim H, Lazoglu I.A comparison of solid model and three-orthogonal dexelfield methods for cutter-workpiece engagement calculations in three- and five-axis virtual milling[J].International Journal of Advanced Manufacturing Technology,2015,81(5/6/7/8):811-823.
|
| [14] |
植俊杰,张立强,许洋洋,等.基于接触区域的球头刀五轴加工无颤振刀具姿态研究[J].计算机集成制造系统,2023,29(9):2971-2980.
|
|
Zhi Jun-jie, Zhang Li-qiang, Xu Yang-yang,et al.Tool posture without chatter in five-axis machining of ball-end milling based on cutter-workpiece engagement[J].Computer Integrated Manufacturing Systems,2023,29(9):2971-2980.
|
| [15] |
Feng H Y, Li H W.Constant scallop-height tool path generation for three-axis sculptured surface machining[J].Computer-Aided Design,2002,34(9):647-654.
|
| [16] |
王振宇,张荣闯,于天彪.圆柱直齿轮铣削加工无干涉刀具路径规划[J].东北大学学报(自然科学版),2022,43(7):988-995.
|
|
Wang Zhen-yu, Zhang Rong-chuang, Yu Tian-biao.Interference-free tool path generation for milling of spur gears[J].Journal of Northeastern University (Natural Science),2022,43(7):988-995.
|