LIU Yu, WANG Zhen-yu, YANG Hui-gang, ZHANG Yi-min. Chatter Reliability Prediction in the Turning Process with Time-Varying Stability[J]. Journal of Northeastern University:Natural Science, 2017, 38(5): 684-689.
[1]Lee L C,Lee K S,Gan C S.On the correlation between dynamic cutting force and tool wear[J].International Journal of Machine Tools & Manufacture,1989,29(3):295-303.
[2]Albertelli P,Mussi V,Ravasio C,et al.An experimental investigation of the effects of spindle speed variation on tool wear in turning[J].Procedia Cirp, 2012,4(11):29-34.
[3]Debnath S,Reddy M M,Yi Q S.Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method[J].Measurement,2016,78:111-119.
[4]Cascón I,Sarasua J A.Mechanistic model for prediction of cutting forces in turning of non-axisymmetric parts[J].Procedia CIRP,2015,31:435-440.
[5]Che D,Ehmann K.Experimental study of force responses in polycrystalline diamond face turning of rock[J].International Journal of Rock Mechanics & Mining Sciences,2014,72:80-91.
[6]Campocasso S,Costes J P,Fromentin G,et al.A generalised geometrical model of turning operations for cutting force modelling using edge discretisation[J].Applied Mathematical Modelling,2015,39(21):6612-6630.
[7]Li L,An Q.An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis[J].Measurement,2015,79:44-52.
[8]Rmili W,Ouahabi A,Serra R,et al.An automatic system based on vibratory analysis for cutting tool wear monitoring[J].Measurement, 2016,77:117-123.
[9]Maia L H A,Abrao A M,Vasconcelos W L,et al.A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission[J].Tribology International, 2015,92:519-532.
[10]Maia L H A,Abrao A M,Vasconcelos W L,et al.A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission[J].Tribology International,2015,92:519-532.
[11]Katuku K,Koursaris A,Sigalas I.Wear,cutting forces and chip characteristics when dry turning ASTM grade 2 austempered ductile iron with PcBN cutting tools under finishing conditions[J].Journal of Materials Processing Technology, 2009,209(5):2412-2420.
[12]Altintas Y,Mohammad R K.Generalized modeling of chip geometry and cutting forces in multi-point thread turning[J].International Journal of Machine Tools & Manufacture,2015,98:21-32.
[13]Ahmed G M S,Quadri S S H,Mohiuddin M S.Optimization of feed and radial force in turning process by using Taguchi design approach[J].Materials Today Proceedings,2015,2(4/5):3277-3285.
[14]Patidar L.Study of optimised process parameters in turning operation through force dynamometer on CNC machine[J].Materials Today Proceedings,2015,2(4/5):2300-2305.
[15]Malakooti B,Wang J,Tandler W E.A sensor-based accelerated approach for multi-attribute machinability and tool life evaluation[J].International Journal of Production Research,1990,28(12):2373-2392.
[16]Campocasso S,Costes J P,Fromentin G,et al.A generalised geometrical model of turning operations for cutting force modelling using edge discretisation[J].Applied Mathematical Modelling,2015,39(21):6612-6630.
[17]Liu Y,Li T X,Liu K,et al.Chatter reliability prediction of turning process system with uncertainties[J].Mechanical Systems & Signal Processing, 2016,66/67:232-247.
[18]Schmitz T L,Smith K S.Machining dynamics frequency response to improved productivity [M].New York:Springer Science Business Media,2009:122-124. (上接第683页)4结论1) 使用大型通用仿真软件对脉冲红外测试模型进行仿真,并将模型仿真数据与已知的实验数据进行了对比,确定了仿真数据的可行性.2) 在仿真模型的分析中发现影响最大温差时间的决定因素为缺陷半径、样板厚度及缺陷深度,同时也发现在缺陷半径相同的情况下,缺陷深度越小,相对温差的峰值越大,峰值温差对应的时间越短.3) 用量纲法推导了各个物理量之间的关系并由仿真数据得出一个近似的深度预测公式,能较为准确地识别缺陷深度与板厚比值小于0.5的板缺陷的缺陷深度.