Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (5): 675-682.DOI: 10.12068/j.issn.1005-3026.2024.05.009
• Mechanical Engineering • Previous Articles
Xian-zhen HUANG1,2, Rui YU1, Zhi-yuan JIANG1, Zhi-ming RONG3
Received:
2023-05-15
Online:
2024-05-15
Published:
2024-07-31
CLC Number:
Xian-zhen HUANG, Rui YU, Zhi-yuan JIANG, Zhi-ming RONG. Modeling and Reliability Global Sensitivity Analysis of Motorized Spindles Considering Thermal Errors[J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 675-682.
介质名称 | 密度/(kg·m-3) | 运动黏度×10-6/(m2·s-1) | 普朗特数 | 导热系数/(W·(m·K)-1) |
---|---|---|---|---|
20°冷却水 | 998.5 | 1.006 | 7.020 | 0.599 |
22°干空气 | 1.205 | 16.06 | 0.703 | 0.026 |
ISO VG32 | — | 21 | — | — |
Table 1 Cooling medium parameters
介质名称 | 密度/(kg·m-3) | 运动黏度×10-6/(m2·s-1) | 普朗特数 | 导热系数/(W·(m·K)-1) |
---|---|---|---|---|
20°冷却水 | 998.5 | 1.006 | 7.020 | 0.599 |
22°干空气 | 1.205 | 16.06 | 0.703 | 0.026 |
ISO VG32 | — | 21 | — | — |
部件 | 材料名称 | 密度×103 | 导热系数 | 弹性模量×105 | 泊松比 | 线膨胀系数×10-5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg·m-3 | W·(m·K)-1 | MPa | ℃-1 | |||||||||||
外壳 | HT300 | 7.35 | 50 | 2.1 | 0.32 | 1.22 | ||||||||
轴承内、外圈 | GCr15 | 7.83 | 42 | 2.09 | 0.32 | 1.28 | ||||||||
滚珠 | Si3N4 | 3.25 | 29.5 | 3.2 | 0.27 | 0.322 | ||||||||
定子、转子 | 硅钢 | 7.70 | 12.9 | 2.0 | 0.26 | 1.28 | ||||||||
转轴 | 20CrMo | 7.84 | 50 | 2.1 | 0.28 | 1.35 | ||||||||
轴环、挡圈 | 1045 | 7.81 | 48.15 | 2.1 | 0.30 | 1.18 |
Table 2 Material parameters of the motorized spindle
部件 | 材料名称 | 密度×103 | 导热系数 | 弹性模量×105 | 泊松比 | 线膨胀系数×10-5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg·m-3 | W·(m·K)-1 | MPa | ℃-1 | |||||||||||
外壳 | HT300 | 7.35 | 50 | 2.1 | 0.32 | 1.22 | ||||||||
轴承内、外圈 | GCr15 | 7.83 | 42 | 2.09 | 0.32 | 1.28 | ||||||||
滚珠 | Si3N4 | 3.25 | 29.5 | 3.2 | 0.27 | 0.322 | ||||||||
定子、转子 | 硅钢 | 7.70 | 12.9 | 2.0 | 0.26 | 1.28 | ||||||||
转轴 | 20CrMo | 7.84 | 50 | 2.1 | 0.28 | 1.35 | ||||||||
轴环、挡圈 | 1045 | 7.81 | 48.15 | 2.1 | 0.30 | 1.18 |
随机变量 | 转速 | 冷却水流量 | 轴向力 | 径向力 |
---|---|---|---|---|
r·min-1 | kg·s-1 | N | N | |
均值 | 60 000 | 0.167 | 350 | 300 |
变异系数 | 0.002 | 0.02 | 0.05 | 0.05 |
Table 3 Random parameter distribution
随机变量 | 转速 | 冷却水流量 | 轴向力 | 径向力 |
---|---|---|---|---|
r·min-1 | kg·s-1 | N | N | |
均值 | 60 000 | 0.167 | 350 | 300 |
变异系数 | 0.002 | 0.02 | 0.05 | 0.05 |
1 | Aalilija A, Gandin CA, Hachem E.A simple and efficient numerical model for thermal contact resistance based on diffuse interface immersed boundary method[J].International Journal of Thermal Sciences,2021,166:106817. |
2 | Mayr J, Jedrzejewski J, Uhlmann E,et al.Thermal issues in machine tools[J].CIRP Annals-Manufacturing Technology,2012,61(2):771-791. |
3 | Cao H R, Zhang X W, Chen X F.The concept and progress of intelligent spindles:a review[J].International Journal of Machine Tools and Manufacture,2017,112:21-52. |
4 | Zhang L L, Xuan J P, Shi T L,et al.Robust,fractal theory,and FEM‑based temperature field analysis for machine tool spindle[J].The International Journal of Advanced Manufacturing Technology,2020,111(5/6):1571-1586. |
5 | Fang B, Cheng M N, Gu T Q,et al.An improved thermal performance modeling for high‑speed spindle of machine tool based on thermal contact resistance analysis[J].The International Journal of Advanced Manufacturing Technology,2022,120(7):5259-5268. |
6 | Ma C, Yang J, Zhao L,et al.Simulation and experimental study on the thermally induced deformations of high‑speed spindle system[J].Applied Thermal Engineering,2015,86:251-268. |
7 | Yao X P, Hu T, Yin G F,et al.Thermal error modeling and prediction analysis based on OM algorithm for machine tool’s spindle[J]. The International Journal of Advanced Manufacturing Technology,2020,106(7):3345–3356. |
8 | Liu K, Li T, Li T J,et al.Thermal behavior analysis of horizontal CNC lathe spindle and compensation for radial thermal drift error[J].The International Journal of Advanced Manufacturing Technology,2018,95(1):1293-1301. |
9 | Zhang L X, Gong W J, Zhang K,et al.Thermal deformation prediction of high‑speed motorized spindle based on biogeography optimization algorithm[J].The International Journal of Advanced Manufacturing Technology,2018,97(5):3141-3151. |
10 | Lee J, Kim D H, Lee C M.A study on the thermal characteristics and experiments of high‑speed spindle for machine tools[J].International Journal of Precision Engineering and Manufacturing,2015,16(2):293-299. |
11 | Harris T A, Kotzalas M N.Essential Concepts of Bearing Technology[M],5th ed.New York:CRC Press,2007. |
12 | Liu J L, Ma C, Wang S L,et al.Thermal‑structure interaction characteristics of a high‑speed spindle‑bearing system[J].International Journal of Machine Tools and Manufacture,2019,137:42-57. |
13 | Kullager‑Fabriken Svenska.Rolling bearings catalogue[EB/OL].(2018-10-12)[2022-03-24].. |
14 | 张雪亮.新型高速电主轴轴承-轴芯热场分布规律与实验研究[D].哈尔滨:哈尔滨理工大学,2019. |
Zhang Xue‑liang.Distribution law and experimental study of heat field new high‑speed motorized spindle bearing‑spindle core [D].Harbin:Harbin University of Science and Technology,2019. | |
15 | Jiang Z Y, Huang X Z, Chang M X,et al.Thermal error prediction and reliability sensitivity analysis of motorized spindle based on Kriging model[J].Engineering Failure Analysis,2021,127:105558. |
16 | Yan B, Yan K, Luo T,et al.Thermal coefficients modification of high speed ball bearing by multi‑object optimization method[J].International Journal of Thermal Sciences,2019,137:313-324. |
17 | 崔向昆.高速电主轴温度分布及其热位移研究[D].沈阳:沈阳建筑大学,2018. |
Cui Xiang‑kun.Research on temperature distribution and thermal displacement of high speed spindle[D].Shenyang:Shenyang Jianzhu University,2018. | |
18 | Chien C H, Jang J Y.3‑D numerical and experimental analysis of a built‑in motorized high‑speed spindle with helical water cooling channel[J].Applied Thermal Engineering,2008,28(17/18):2327-2336. |
19 | 黄贤振,曹辉,张义民.基于蒙特卡罗方法的直角切削切削力概率特性分析[J].东北大学学报(自然科学版),2015,36(2):254-258. |
Huang Xian‑zhen, Cao Hui, Zhang Yi‑min.Probabilistic analysis of cutting force in orthogonal cutting based on using Monte‑Carlo method[J].Journal of Northeastern University (Natural Science),2015,36(2):254-258. | |
20 | Ding P F, Huang X Z, Li Y X,et al.Reliability optimization of cutting parameters considering the diameter error of slender shaft[J].Journal of Mechanical Science and Technology,2021,35(10):4673-4683. |
21 | Liu H Z, Huang X Z, Yan M,et al.Dynamic response and time-variant reliability analysis of an eight‑rod shock isolator[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2022,236(13):7041-7054. |
22 | 吕震宙,宋述芳,李璐祎,等.结构/机构可靠性设计基础[M],西安:西北工业大学出版社,2019. |
Zhen‑zhou Lyu, Song Shu‑fang, Li Lu‑yi,et al.Reliability sensitivity analysis of angular contact ball bearing skidding[M],Xi 'an:Northwestern Polytechnical University Press,2019. | |
23 | Cui L J, Lu Z Z, Zhao X P.Moment‑independent importance measure of basic random variable and its probability density evolution solution[J].Science China Technological Sciences,2010,53(4):1138-1145. |
24 | 黄贤振,朱会彬,姜智元 等.角接触球轴承打滑可靠性灵敏度分析[J].东北大学学报(自然科学版),2021,42(12):1731-1738. |
Huang Xian‑zhen, Zhu Hui‑bin, Jiang Zhi‑yuan,et al.Fundamental of structure and mechanism reliability design[J].Journal of Northeastern University(Natural Science),2021,42(12):1731-1738. |
[1] | Hai-yang GAO, Lian-guang WANG, Bai-ling CHEN. Reliability Analysis of FRP-Concrete-Steel Tubular Composite Column Under Axial Compression [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 430-438. |
[2] | Xian-zhen HUANG, Chao SUN, Cheng-ying ZHAO, Yang LIU. Reliability Allocation of NC Machine Tool Subsystem Based on Improved ARINC Method [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 226-233. |
[3] | HU Bing, HUANG Xian-zhen, DU Shan-shan. Reliability Sensitivity Analysis of the Fatigue Life of Wind Turbine Bearings [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1128-1135. |
[4] | ZHANG Dong-xiang, ZHANG Chi, FAN Wei, GUO Li-xin. Effect of the Size of Artificial Vertebral Body on the Mechanical Properties of Cervical Spine [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1136-1143. |
[5] | HUANG Xian-zhen, LUAN Xiao-gang, ZHU Li-sha, LIU Hui-zhen. Displacement Reliability Analysis of Cone Valve Spools Based on Bidirectional Fluid-Solid Coupling [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 667-673. |
[6] | QIAO Li-ping, LU Wei-li, MIN Zhong-shun, WANG Zhe-chao. Reliability Analysis of Rock Block Stability and Support for Underground Water-Sealed Storage Caverns [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 544-550. |
[7] | HUANG Xian-zhen, ZHANG An-xing, SUN Kai-bo. Reliability Analysis of Grinding Head Bolt Group System of Grinding Robot [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1712-1719. |
[8] | JIN Chang-yu, ZHANG Jia-yao, YU Zhong-jie, WANG Qiang. Reliability Analysis of Surface Subsidence Based on Response Surface Methodology [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1734-1742. |
[9] | ZHA Cong-yi, SUN Zhi-li, PAN Chen-rong, WANG Jian. Parallel Adaptive Sampling Strategy for Structural Reliability Analysis [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 76-82. |
[10] | AN Guo-qing, WANG Rui, ZHAO Hui, LI Tie-ying. Dynamic Response of Double-Skin Steel-Concrete Composite Panel Under Impact Loading [J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1192-1200. |
[11] | SUN Yao, SUN Zhi-li, ZHOU Jie, WANG Jian. Theoretical Calculation Method of Reliability for Multi-state Phased-Mission Systems [J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 689-695. |
[12] | HUANG Xian-zhen, SUN Liang-shi, DING Peng-fei, ZHU Hui-bin. Optimization of Turning Parameters of GH4169 Based on Reliability [J]. Journal of Northeastern University(Natural Science), 2022, 43(5): 696-702. |
[13] | WANG Lian-guang, MENG Yu-qi, WANG Zi-qing. Connection of Precast Profiled Steel Sheet Concrete Composite Plate and Steel Beam and Its Finite Element Analysis [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 575-581. |
[14] | CHEN Xiao-hui, ZHANG Heng, LIU Ming-yue, HOU Dong-xiao. Finite Element Analysis of Tensile Failure of Open-Pored Carbon Fiber Composite Laminates [J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 397-403. |
[15] | YANG Zhou, PAK Un-song, KWON Chol-u. Gradual Reliability Sensitivity Analysis of Thermal-Mechanical Coupling of Disc Brakes [J]. Journal of Northeastern University(Natural Science), 2022, 43(1): 48-56. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||