Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (11): 1587-1594.DOI: 10.12068/j.issn.1005-3026.2024.11.009
• Mechanical Engineering • Previous Articles Next Articles
Zhi-jin ZHANG, He LI(), Yu-shi HUANG, Wen-xue WANG
Received:
2023-06-05
Online:
2024-11-15
Published:
2025-02-24
Contact:
He LI
About author:
LI He,E-mail: hli@mail.neu.edu.cnCLC Number:
Zhi-jin ZHANG, He LI, Yu-shi HUANG, Wen-xue WANG. Application of Deep Residual Shrinkage Network in Rolling Bearing Fault Diagnosis[J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1587-1594.
标签 | 故障状态(直径/mm) | 训练样本 | 测试样本 |
---|---|---|---|
0 | 正常 | 2 800 | 200 |
1 | 外圈故障(0.177 8) | 2 800 | 200 |
2 | 外圈故障(0.355 6) | 2 800 | 200 |
3 | 外圈故障(0.533 4) | 2 800 | 200 |
4 | 内圈故障(0.177 8) | 2 800 | 200 |
5 | 内圈故障(0.355 6) | 2 800 | 200 |
6 | 内圈故障(0.533 4) | 2 800 | 200 |
7 | 滚动体故障(0.177 8) | 2 800 | 200 |
8 | 滚动体故障(0.355 6) | 2 800 | 200 |
9 | 滚动体故障(0.533 4) | 2 800 | 200 |
Table 1 Detailed description of the CWRU dataset
标签 | 故障状态(直径/mm) | 训练样本 | 测试样本 |
---|---|---|---|
0 | 正常 | 2 800 | 200 |
1 | 外圈故障(0.177 8) | 2 800 | 200 |
2 | 外圈故障(0.355 6) | 2 800 | 200 |
3 | 外圈故障(0.533 4) | 2 800 | 200 |
4 | 内圈故障(0.177 8) | 2 800 | 200 |
5 | 内圈故障(0.355 6) | 2 800 | 200 |
6 | 内圈故障(0.533 4) | 2 800 | 200 |
7 | 滚动体故障(0.177 8) | 2 800 | 200 |
8 | 滚动体故障(0.355 6) | 2 800 | 200 |
9 | 滚动体故障(0.533 4) | 2 800 | 200 |
模块名称 | 模块数量 | 卷积核的数量,卷积核的尺寸,步长 | 输出 尺寸 |
---|---|---|---|
Conv | 1 | (4,3,2) | 4×200×1 |
RSBU | 1 | (4,3,2) | 4×100×1 |
RSBU | 1 | (4,3,1) | 4×100×1 |
RSBU | 1 | (8,3,2) | 8×50×1 |
RSBU | 1 | (8,3,1) | 8×50×1 |
RSBU | 1 | (16,3,2) | 16×25×1 |
RSBU | 1 | (16,3,2) | 16×25×1 |
BN,ReLU,GAP FC | 1 1 | — — | 16 10 |
Table 2 Network structure of DRSN-PF
模块名称 | 模块数量 | 卷积核的数量,卷积核的尺寸,步长 | 输出 尺寸 |
---|---|---|---|
Conv | 1 | (4,3,2) | 4×200×1 |
RSBU | 1 | (4,3,2) | 4×100×1 |
RSBU | 1 | (4,3,1) | 4×100×1 |
RSBU | 1 | (8,3,2) | 8×50×1 |
RSBU | 1 | (8,3,1) | 8×50×1 |
RSBU | 1 | (16,3,2) | 16×25×1 |
RSBU | 1 | (16,3,2) | 16×25×1 |
BN,ReLU,GAP FC | 1 1 | — — | 16 10 |
1 | Zhao H M, Liu H D, Jin Y,et al.Feature extraction for data‑driven remaining useful life prediction of rolling bearings[J].IEEE Transactions on Instrumentation and Measurement,2021,70:3511910. |
2 | Shi H T, Shang Y J.Initial fault diagnosis of rolling bearing based on second‑order cyclic autocorrelation and DCAE combined with transfer learning[J].IEEE Transactions on Instrumentation and Measurement,2065,71:3503818. |
3 | Cheng Y W, Lin M X, Wu J,et al.Intelligent fault diagnosis of rotating machinery based on continuous wavelet transform‑local binary convolutional neural network[J].Knowledge‑Based Systems,2021,216:106796. |
4 | Ni Q, Ji J C, Feng K,et al.A fault information‑guided variational mode decomposition (FIVMD) method for rolling element bearings diagnosis[J].Mechanical Systems and Signal Processing,2022,164:108216. |
5 | 王新刚,王超,韩凯忠.基于优化VMD和MCKD的滚动轴承早期故障诊断方法[J].东北大学学报(自然科学版),2021,42(3):373-380,388. |
Wang Xin‑gang, Wang Chao, Han Kai‑zhong.Early fault diagnosis method of rolling bearings based on optimization of VMD and MCKD[J].Journal of Northeastern University (Natural Science),2021,42(3):373-380,388. | |
6 | 罗忠,徐迪,李雷,等.基于改进二阶循环平稳解卷积的轴承故障检测方法[J].东北大学学报(自然科学版),2021,42(5):673-678. |
Luo Zhong, Xu Di, Li Lei,et al.Bearing fault detection based on improved CYCBD method[J].Journal of Northeastern University (Natural Science),2021,42(5):673-678. | |
7 | Zhao X J, Qin Y, He C B,et al.Intelligent fault identification for rolling element bearings in impulsive noise environments based on cyclic correntropy spectra and LSSVM[J].IEEE Access,2020,8:40925–40938. |
8 | Chen F F, Cheng M T, Tang B P,et al.A novel optimized multi‑kernel relevance vector machine with selected sensitive features and its application in early fault diagnosis for rolling bearings[J].Measurement,2020,156:107583. |
9 | Van M, Hoang D T, Kang H J.Bearing fault diagnosis using a particle swarm optimization‑least squares wavelet support vector machine classifier[J].Sensors,2020,20(12):3422. |
10 | Chen Z Y, Mauricio A, Li W H,et al.A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks[J].Mechanical Systems and Signal Processing,2020,140:106683. |
11 | Jia F, Lei Y G, Lu N,et al.Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization[J].Mechanical Systems and Signal Processing,2018,110:349-367. |
12 | Niu G X, Wang X, Golda M,et al.An optimized adaptive PReLU-DBN for rolling element bearing fault diagnosis[J].Neurocomputing,2021,445:26-34. |
13 | Zhao H M, Yang X X, Chen B J,et al.Bearing fault diagnosis using transfer learning and optimized deep belief network[J].Measurement Science and Technology,2022,33(6):065009. |
14 | Meng Z, Zhan X Y, Li J,et al.An enhancement denoising autoencoder for rolling bearing fault diagnosis[J].Measurement,2018,130:448-454. |
15 | Xiang Z, Zhang X N, Zhang W W,et al.Fault diagnosis of rolling bearing under fluctuating speed and variable load based on TCO spectrum and stacking auto‑encoder[J].Measurement,2019,138:162-174. |
16 | Zhao M H, Zhong S S, Fu X Y,et al.Deep residual shrinkage networks for fault diagnosis[J].IEEE Transactions on Industrial Informatics,2020,16(7):4681-4690. |
[1] | Yan LIU, Qi-jie BU, Hong-chen ZHAO, Xin GUO. Operating Performance Assessment of Flotation Process Based on Multi-source Heterogeneous Information [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1217-1226. |
[2] | Wei-wei LIU, Jia-he QIU, Guang-da HU, Ze-yuan LIU. Surface Damage Detection Method for Retired Shaft Parts Based on Improved YOLOv5 [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1002-1010. |
[3] | Hong-wei WANG, Lei LI, Chen-yu LIU, Xun WANG. Steering Actuator Fault Diagnosis of Intelligent Vehicle Based on Variable Parameter Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 913-920. |
[4] | An-lin TIAN, Wei-min LEI, Peng ZHANG, Wei ZHANG. A Multi-scale Edge Detection Method Based on Encoder-Decoder [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 936-943. |
[5] | Yu-chuan FAN, Bo FAN, Zhuo CHEN, Xiao-shun ZHANG. A Method for Anomaly Detection and Fault Diagnosis of Elevator Door Machine [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 761-768. |
[6] | Li-xin GUO, Su-tao BI, Ming-yang ZHAO. State Detection Algorithm of Manipulator Based on Improved YOLOv4 Lightweight Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 769-775. |
[7] | Yuan MA, Li-huang SHE, Jia-wei LI, Xi-rong BAO. Adaptive Graph Convolutional 3D Point Cloud Recognition Algorithm Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 786-792. |
[8] | Hu FENG, Ke-chen SONG, Wen-qi CUI, Yun-hui YAN. Few-Shot Semantic Segmentation of Strip Steel Surface Defects Based on Meta-Learning [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 354-360. |
[9] | Bo HAO, Xin-yan XU, Yu-xin ZHAO, Jun-wei YAN. Surface Defect Detection of Riveting Holes Based on Improved YOLOv8 [J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1595-1603. |
[10] | Meng-yuan LIU, Zhao-xia WU, Jin-yang WANG, Guang-lei XIA. Air Permeability Prediction of Sinter Layer Based on TST-LSTM Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1379-1385. |
[11] | Ying SUN, Ya-ru ZHOU, Xue-ying ZHANG. Speech Emotion Recognition Fusing Functional Paralanguage Proportion Coefficient [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 40-48. |
[12] | JIANG Yang, LIU Cheng, DING Qi-chuan, WANG Li. Segmentation of COVID-19 CT Images Based on Dual Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1259-1268. |
[13] | ZHOU Song, GAO Tian-han. EEG Recognition Method for Epileptic Patients Based on RNN Model with Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1098-1103. |
[14] | DING Qi-chuan, WANG Li, LIU Cheng. Classification of Pulmonary Nodule by Combining Long-Distance Channel Attention and Pathological Feature [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 476-485. |
[15] | CHEN Cheng, SHI Pei-xin, WANG Zhan-sheng, JIA Peng-jiao. Shield Load Prediction Method Based on Deep Learning with Multiattention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1631-1638. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||