Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (4): 43-51.DOI: 10.12068/j.issn.1005-3026.2025.20230293
• Mechanical Engineering • Previous Articles Next Articles
Yang-jun WU1, Zhen-ping LI2, Hong-liang YAO1, Sheng-dong HAN1
Received:
2023-10-20
Online:
2025-04-15
Published:
2025-07-01
CLC Number:
Yang-jun WU, Zhen-ping LI, Hong-liang YAO, Sheng-dong HAN. Modeling and Optimization Design of Vehicle Powertrain System Considering Effect of Auxiliary Components[J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 43-51.
惯性参数 | 空气滤清器 | 中冷器 | 发动机 | |
---|---|---|---|---|
质量/kg | m | 0.509 | 1.816 | 4.820 |
重心 坐标/m | xc | 0.112 | 0.821 | 0.193 |
yc | 0.054 | 0.174 | -0.195 | |
zc | -0.065 | -0.029 | -0.079 | |
Jxo | 0.005 | 0.047 | 1.609 | |
Jyo | 0.007 | 0.028 | 0.917 | |
Jzo | 0.004 | 0.073 | 0.179 |
Table 1 Inertial parameters of the powertrain
惯性参数 | 空气滤清器 | 中冷器 | 发动机 | |
---|---|---|---|---|
质量/kg | m | 0.509 | 1.816 | 4.820 |
重心 坐标/m | xc | 0.112 | 0.821 | 0.193 |
yc | 0.054 | 0.174 | -0.195 | |
zc | -0.065 | -0.029 | -0.079 | |
Jxo | 0.005 | 0.047 | 1.609 | |
Jyo | 0.007 | 0.028 | 0.917 | |
Jzo | 0.004 | 0.073 | 0.179 |
支撑 位置 | x | y | z | |||
---|---|---|---|---|---|---|
阻尼/(N·s·m-1) | 刚度/(N·m-1) | 阻尼/(N·s·m-1) | 刚度/(N·m-1) | 阻尼/(N·s·m-1) | 刚度/(N·m-1) | |
弹簧1 | 6.125 | 5.62×104 | 6.125 | 5.62×104 | 0.234 | 4.31×104 |
弹簧2 | 5.412 | 4.51×104 | 6.013 | 4.62×104 | 4.122 | 0.12×104 |
弹簧3 | 7.621 | 0.32×104 | 7.943 | 0.67×104 | 8.142 | 4.23×104 |
弹簧4 | 7.213 | 6.48×104 | 7.213 | 6.48×104 | 6.145 | 4.01×104 |
弹簧5 | 4.706 | 8.20×107 | 0.079 | 0.95×108 | 0.079 | 0.95×108 |
弹簧6 | 0.606 | 7.32×107 | 1.402 | 1.46×108 | 1.602 | 8.12×107 |
弹簧7 | 0.588 | 8.36×107 | 1.080 | 8.20×107 | 0.685 | 0.42×108 |
Table 2 Identification results of supporting stiffness and damping parameters for each component
支撑 位置 | x | y | z | |||
---|---|---|---|---|---|---|
阻尼/(N·s·m-1) | 刚度/(N·m-1) | 阻尼/(N·s·m-1) | 刚度/(N·m-1) | 阻尼/(N·s·m-1) | 刚度/(N·m-1) | |
弹簧1 | 6.125 | 5.62×104 | 6.125 | 5.62×104 | 0.234 | 4.31×104 |
弹簧2 | 5.412 | 4.51×104 | 6.013 | 4.62×104 | 4.122 | 0.12×104 |
弹簧3 | 7.621 | 0.32×104 | 7.943 | 0.67×104 | 8.142 | 4.23×104 |
弹簧4 | 7.213 | 6.48×104 | 7.213 | 6.48×104 | 6.145 | 4.01×104 |
弹簧5 | 4.706 | 8.20×107 | 0.079 | 0.95×108 | 0.079 | 0.95×108 |
弹簧6 | 0.606 | 7.32×107 | 1.402 | 1.46×108 | 1.602 | 8.12×107 |
弹簧7 | 0.588 | 8.36×107 | 1.080 | 8.20×107 | 0.685 | 0.42×108 |
模态阶数 | 模态频率 | 模态阻尼比 | ||||
---|---|---|---|---|---|---|
实验/Hz | 仿真/Hz | 误差/% | 实验 | 仿真 | 误差/% | |
1 | 9.098 | 8.554 | -5.98 | 0.083 | 0.074 | -10.37 |
2 | 15.205 | 14.537 | -4.39 | 0.050 | 0.044 | -11.89 |
3 | 21.995 | 21.000 | -4.52 | 0.034 | 0.030 | -11.77 |
4 | 32.907 | 31.708 | -3.64 | 0.024 | 0.020 | -15.72 |
5 | 50.108 | 48.451 | -3.31 | 0.015 | 0.013 | -1.81 |
Table 3 Modal parameters of simulation and experiment
模态阶数 | 模态频率 | 模态阻尼比 | ||||
---|---|---|---|---|---|---|
实验/Hz | 仿真/Hz | 误差/% | 实验 | 仿真 | 误差/% | |
1 | 9.098 | 8.554 | -5.98 | 0.083 | 0.074 | -10.37 |
2 | 15.205 | 14.537 | -4.39 | 0.050 | 0.044 | -11.89 |
3 | 21.995 | 21.000 | -4.52 | 0.034 | 0.030 | -11.77 |
4 | 32.907 | 31.708 | -3.64 | 0.024 | 0.020 | -15.72 |
5 | 50.108 | 48.451 | -3.31 | 0.015 | 0.013 | -1.81 |
支撑 位置 | x | ||
---|---|---|---|
阻尼/(N·m-1) | |||
弹簧8 | 4.23×105 | 6.72×105 | 1.3 |
弹簧9 | 8.43×105 | 9.15×105 | 44.1 |
弹簧10 | 4.63×105 | 8.43×105 | 1.6 |
支撑 位置 | y | ||
阻尼/(N·m-1) | |||
弹簧8 | 4.23×105 | 6.72×105 | 1.3 |
弹簧9 | 4.68×105 | 5.63×105 | 15.6 |
弹簧10 | 8.12×105 | 1.53×106 | 40.1 |
支撑 位置 | z | ||
阻尼/(N·m-1) | |||
弹簧8 | 9.12×105 | 1.43×106 | 31.3 |
弹簧9 | 4.68×105 | 5.63×105 | 15.6 |
弹簧10 | 4.63×105 | 8.43×105 | 1.6 |
Table 4 Identification of supporting stiffness and damping parameters for the engine
支撑 位置 | x | ||
---|---|---|---|
阻尼/(N·m-1) | |||
弹簧8 | 4.23×105 | 6.72×105 | 1.3 |
弹簧9 | 8.43×105 | 9.15×105 | 44.1 |
弹簧10 | 4.63×105 | 8.43×105 | 1.6 |
支撑 位置 | y | ||
阻尼/(N·m-1) | |||
弹簧8 | 4.23×105 | 6.72×105 | 1.3 |
弹簧9 | 4.68×105 | 5.63×105 | 15.6 |
弹簧10 | 8.12×105 | 1.53×106 | 40.1 |
支撑 位置 | z | ||
阻尼/(N·m-1) | |||
弹簧8 | 9.12×105 | 1.43×106 | 31.3 |
弹簧9 | 4.68×105 | 5.63×105 | 15.6 |
弹簧10 | 4.63×105 | 8.43×105 | 1.6 |
支撑位置 | x | y | z | |||
---|---|---|---|---|---|---|
阻尼/(N·s·m-1) | 刚度/(N·m-1) | 阻尼/(N·s·m-1) | 刚度/(N·m-1) | 阻尼/(N·s·m-1) | 刚度/(N·m-1) | |
弹簧1 | 7.810 | 4.83×104 | 7.87 | 4.16×104 | 4.120 | 0.65×104 |
弹簧4 | 9.160 | 6.64×104 | 9.37 | 7.98×104 | 7.970 | 4.32×104 |
弹簧5 | 5.960 | 1.03×108 | 0.77 | 0.43×108 | 0.300 | 0.47×108 |
弹簧6 | 0.614 | 5.58×107 | 1.29 | 1.35×108 | 1.920 | 7.35×107 |
弹簧7 | 0.653 | 1.08×108 | 1.29 | 1.01×108 | 0.843 | 1.79×107 |
Table 5 Optimized support stiffness and damping of the auxiliary components
支撑位置 | x | y | z | |||
---|---|---|---|---|---|---|
阻尼/(N·s·m-1) | 刚度/(N·m-1) | 阻尼/(N·s·m-1) | 刚度/(N·m-1) | 阻尼/(N·s·m-1) | 刚度/(N·m-1) | |
弹簧1 | 7.810 | 4.83×104 | 7.87 | 4.16×104 | 4.120 | 0.65×104 |
弹簧4 | 9.160 | 6.64×104 | 9.37 | 7.98×104 | 7.970 | 4.32×104 |
弹簧5 | 5.960 | 1.03×108 | 0.77 | 0.43×108 | 0.300 | 0.47×108 |
弹簧6 | 0.614 | 5.58×107 | 1.29 | 1.35×108 | 1.920 | 7.35×107 |
弹簧7 | 0.653 | 1.08×108 | 1.29 | 1.01×108 | 0.843 | 1.79×107 |
1 | Tametang M M I, Yemélé D, Leutcho G D. Dynamical analysis of series hybrid electric vehicle powertrain with torsional vibration: antimonotonicity and coexisting attractors[J]. Chaos, Solitons & Fractals, 2021, 150: 111174. |
2 | Lee H J, Shim J K. Multi-objective optimization of a dual mass flywheel with centrifugal pendulum vibration absorbers in a single-shaft parallel hybrid electric vehicle powertrain for torsional vibration reduction[J]. Mechanical Systems and Signal Processing, 2022, 163: 108152. |
3 | Guo R, Zhou Z W, Lou D M, et al. Dynamic modeling and optimization for powertrain shake characteristics of electric powertrain system with hydraulic engine mounts [J]. Journal of Vibration and Control,2024,163:108152. |
4 | 吴杨俊, 徐翠强, 陈杰, 等. 内燃动力包隔振参数灵敏度分析及优化设计[J]. 中南大学学报(自然科学版), 2021, 52(11): 3872-3884. |
Wu Yang-jun, Xu Cui-qiang, Chen Jie, et al. Sensitivity analysis and optimization design of parameters of vibration isolation for power pack[J]. Journal of Central South University (Science and Technology), 2021, 52(11): 3872-3884. | |
5 | Fan R L, Fei Z N, Feng C C, et al. Low-frequency structure-borne noise refinement based on rigid-flexible coupling model of powertrain mounting system[J]. International Journal of Computer Applications in Technology, 2019, 61(4): 247-252. |
6 | Mohite S R, Bijwe V B, Deysarkar S, et al.Application of flexible multi body dynamics (MBD) and finite element analysis (FEA) for powertrain induced NVH development of a vehicle[J]. Symposium on International Automotive Technology, 2011, 26(7): 2688-3627. |
7 | 李飞, 朱天军, 姜清伟,等. 基于 K&C 试验台的汽车动力总成惯性参数精确测试方法研究[J]. 测试技术学报, 2015, 29(6):467-472. |
Li Fei, Zhu Tian-jun, Jiang Qing-wei,et al. The accurate measurement research on inertia parameters of vehicle powertrain based on K & C test rig[J]. Journal of Test and Measurement Technology, 2015, 29(6): 468-472. | |
8 | Malekjafarian A, Ashory M R, Khatibi M M, et al. Rigid body stiffness matrix for identification of inertia properties from output-only data[J]. European Journal of Mechanics-A/Solids, 2016, 59: 85-94. |
9 | Pv T, Msa E. Development of high fidelity reduced order hybrid stick[J]. Aerospace Science and Technology, 2019, 87(36): 404-416. |
10 | 刘庆林, 孙攀旭, 杨红. 基于复阻尼理论的混合结构Rayleigh阻尼模型[J]. 地震工程学报, 2018, 40(5): 983-987. |
Liu Qing-lin, Sun Pan-xu, Yang Hong. Rayleigh damping model of mixed structures based on complex damping theory[J]. China Earthquake Engineering Journal, 2018, 40(5): 983-987. | |
11 | Gao Y K, Feng H X, Fang J G,et al. Experimental study on identification of inertia parameters of truck cab based on mass line method[J]. Journal of Vibration and Shock, 201, 32 (16): 193-197. |
12 | Pavlenko I, Saga M L, Kuric I, et al. Parameter identification of cutting forces in crankshaft grinding using artificial neural networks[J]. Materials, 2020, 13(23): 5357. |
[1] | Xiao-peng LI, Jia-xing FU, Hai-long LIU, Meng YIN. RBF Neural Network Compensation Sliding Mode Control Strategy for Flexible Space Manipulators [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1258-1267. |
[2] | Lin LIU, Yu-hao SONG. Improved WLS Ultra-wideband Positioning Algorithm Based on Error Factor [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1235-1243. |
[3] | Wei-wei LIU, Bing-jun LIU, Huan-qiang LIU, Ze-yuan LIU. Defect Identification Method for Laser Melting Deposition Process [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1150-1158. |
[4] | Tao REN, Xin-liang LIU, Hong-feng CHEN, Yan-lu MA. Segmented Estimation Method for Early Warning Magnitude Based on Convolutional Neural Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(8): 1073-1079. |
[5] | Pei-yun XUE, Jing BAI, Nan ZHANG, Jian-xing ZHAO. VMD Based Binary Channels Speech Feature Map Extraction Algorithm for Dysarthria [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 793-801. |
[6] | Hong-tu XIE, Jia-xing CHEN, Lin ZHANG, Nan-nan ZHU. Lightweight Ship Recognition Algorithm Based on SNN in SAR Images [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 474-482. |
[7] | Ai-ping YANG, Si-jie FANG, Ming-fu SHAO, Teng-fei ZHANG. Transformer-based Multi-scale Underwater Image Enhancement Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1696-1705. |
[8] | Meng-yuan LIU, Zhao-xia WU, Jin-yang WANG, Guang-lei XIA. Air Permeability Prediction of Sinter Layer Based on TST-LSTM Model [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1379-1385. |
[9] | Yan-xia LYU, Shuai HAO, Guang-tong QIAO, Ye XING. A Social Recommendation Algorithm Based on Graph Neural Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(1): 10-17. |
[10] | ZHENG Yan, ZHAO Jia-xu, BIAN Jie. Improved Object Tracking Algorithm Based on SiamBAN Tracker [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1227-1233. |
[11] | ZHOU Song, GAO Tian-han. EEG Recognition Method for Epileptic Patients Based on RNN Model with Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1098-1103. |
[12] | LIU Xiao-xi, JIANG Hui-yan, LUO Min. Multi-constraint Optimal Puncture Path Planning Algorithm for Liver Cancer Ablation [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 922-930. |
[13] | ZHAO Bin, WU Cheng-dong, JIANG Yang, SUN Ruo-huai. Robot Zero Calibration Method and Accuracy Evaluation for Spatial Parameter Clustering Identification [J]. Journal of Northeastern University(Natural Science), 2023, 44(6): 761-769. |
[14] | YANG Xuan, HE Zhan-qi. Improved Two-layer BiLSTM Electrocardiosignal Segmentation Method [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1705-1711. |
[15] | YANG Chao-ran, LIAO Shan-shan, CHEN Da, KANG Yan. Automatic Measurement Method for Fetal Head Circumference Based on Convolution Neural Network [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1571-1577. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||