| [1] |
Jia N N, Guo K, He Y M, et al. A thermomechanical process to achieve mechanical properties comparable to those of quenched-tempered medium-C steel[J]. Materials Science and Engineering: A, 2017, 700(17): 175-182.
|
| [2] |
全国钢标准化技术委员会. 工程机械用高强度耐磨钢板和钢带 [S]. 北京:中国标准出版社,2022.
|
|
National Steel Standardisation Technical Committee. High-strength wear-resistant steel plates and strips for construction machinery [S]. Beijing: China Standard Press, 2022.
|
| [3] |
王昭东, 邓想涛, 曹艺, 等. 新型低成本超高强低合金耐磨钢研究及其工业化应用[J]. 钢铁, 2010, 45(8): 61-64, 69.
|
|
Wang Zhao-dong, Deng Xiang-tao, Cao Yi, et al. Development and industrial application of new low alloy abrasion steel with low cost and ultra-high strength[J]. Iron & Steel, 2010, 45(8): 61-64, 69.
|
| [4] |
郑东升,范才河,蹇海根,等. 工程机械用超高强钢的弯曲性能及弯曲过程中的微观组织演变[J].材料热处理学报,2022,43(3):81-88.
|
|
Zheng Dong-sheng, Fan Cai-he, Qian Hai-gen, et al. Bending properties and microstructure evolution during bending of ultra-high strength steel for construction machinery[J]. Journal of Heat Treatment of Materials, 2022, 43(3): 81-88.
|
| [5] |
蒋月月, 王昭东, 邓想涛. 铈对低合金超高强钢马氏体相变行为的影响[J]. 钢铁, 2020, 55(6): 84-90.
|
|
Jiang Yue-yue, Wang Zhao-dong, Deng Xiang-tao. Effect of trace rare earth Ce on martensitic transformation behavior of ultra-high strength low alloy steel[J]. Iron & Steel, 2020, 55(6): 84-90.
|
| [6] |
Inoue T, Ueji R. Improvement of strength, toughness and ductility in ultrafine-grained low-carbon steel processed by warm bi-axial rolling[J]. Materials Science and Engineering: A, 2020, 786: 139415.
|
| [7] |
Song R, Ponge D, Raabe D, et al. Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing[J]. Acta Materialia, 2005, 53(3): 845 -858.
|
| [8] |
Mojtaba D, Fathallah Q, Mahdi G, et al. Effect of inter-cycle heat treatment in accumulative roll-bonding (ARB) process on planar isotropy of mechanical properties of AA1050 sheets[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(9): 2381-2393.
|
| [9] |
Ovid’ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials[J]. Progress in Materials Science, 2018, 94: 462-540.
|
| [10] |
Shaeri M H, Shaeri M, Salehi M T, et al. Microstructure and texture evolution of Al-7075 alloy processed by equal channel angular pressing[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1367-1375.
|
| [11] |
Duan J Q, Quadir M Z, Xu W, et al. Texture balancing in a FCC/BCC multilayered composite produced by accumulative roll bonding[J]. Acta Materialia, 2017, 123: 11-23.
|
| [12] |
苏元飞, 李慧杰, 徐晓宁, 等. 温轧对DP590钢层状超细晶双相组织与拉伸性能的影响[J]. 东北大学学报(自然科学版), 2023, 44(3): 357-362, 369.
|
|
Su Yuan-fei, Li Hui-jie, Xu Xiao-ning, et al. Effect of warm rolling on laminated ultra-fine grained dual-phase microstructure and tensile properties of DP590 steel[J]. Journal of Northeastern University (Natural Science), 2023, 44(3): 357-362, 369.
|
| [13] |
Zhao X, Yang X L. Ultrafine-grained steel produced by warm rolling and annealing of lath martensite[J]. Materials Science Forum, 2010, 667/668/669: 863-866.
|
| [14] |
Hanamura T, Yin F, Nagai K. Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size[J]. ISIJ International, 2004, 44(3): 610-617.
|
| [15] |
Zhou Y H, Xiao Y, Li R, et al. In situ investigation on plastic deformation behaviors in austenite-ferrite heterostructured stainless steel[J]. Materials Science and Engineering: A, 2022, 857: 144111.
|
| [16] |
Zhao L J, Park N, Tian Y Z, et al. Dynamic transformation mechanism for producing ultrafine grained steels[J]. Advanced Engineering Materials, 2018, 20(7): 1701016.
|
| [17] |
Wang P F, Li Z D, Lin G B, et al. Influence of vanadium on the microstructure and mechanical properties of medium-carbon steels for wheels[J]. Metals, 2018, 8(12): 978.
|