东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (9): 1277-1286.DOI: 10.12068/j.issn.1005-3026.2024.09.008
• 机械工程 • 上一篇
收稿日期:
2023-05-07
出版日期:
2024-09-15
发布日期:
2024-12-16
通讯作者:
孙伟
作者简介:
刘芳名(1997-),男,山东烟台人,东北大学硕士研究生基金资助:
Received:
2023-05-07
Online:
2024-09-15
Published:
2024-12-16
Contact:
Wei SUN
About author:
SUN Wei, E-mail: weisun@mail.neu.edu.cn摘要:
针对空间串联管路迫切需要减振的问题,提出了一种基于管-实体单元耦合的空间串联管路有限元建模方法,并在此基础上执行了以降低应力响应为目标的卡箍布局优化.详细描述了建模理念,即卡箍及管接头等应力较大区域采用实体单元建模,其他区域采用管单元建模,最终将各部分耦合起来完成整体建模.创建了具体的优化模型,并给出了利用遗传算法进行优化的流程.以典型的串联管路为对象进行了实例研究,通过仿真与试验验证了所创模型的合理性.执行了降应力优化,获得了系统最优卡箍布局,优化后的系统基频最大共振应力相较于初始状态降低了27.05%.
中图分类号:
刘芳名, 孙伟. 基于管-实体单元耦合的串联管路动力学建模及降应力优化[J]. 东北大学学报(自然科学版), 2024, 45(9): 1277-1286.
Fang-ming LIU, Wei SUN. Dynamic Modeling and Stress Reduction Optimization of Series Pipelines Based on Pipe-Solid Element Coupling[J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1277-1286.
构件 | 弹性模量/GPa | 密度/(kg?m-3) | 泊松比 |
---|---|---|---|
管路 | 204 | 7 800 | 0.285 |
管接头 | 204 | 7 800 | 0.285 |
卡箍箍带 | 240 | 7 800 | 0.285 |
金属毡 | 0.6 | 7 800 | 0.285 |
螺栓 | 210 | 7 800 | 0.285 |
表1 管路系统各构件的材料参数 (of the pipeline system)
Table 1 Material parameters of each component
构件 | 弹性模量/GPa | 密度/(kg?m-3) | 泊松比 |
---|---|---|---|
管路 | 204 | 7 800 | 0.285 |
管接头 | 204 | 7 800 | 0.285 |
卡箍箍带 | 240 | 7 800 | 0.285 |
金属毡 | 0.6 | 7 800 | 0.285 |
螺栓 | 210 | 7 800 | 0.285 |
模态阻尼比阶次 | 1 | 2 | 3 |
---|---|---|---|
模态阻尼比数值 | 0.021 | 0.013 | 0.010 |
表2 模态阻尼比
Table 2 Modal damping ratio
模态阻尼比阶次 | 1 | 2 | 3 |
---|---|---|---|
模态阻尼比数值 | 0.021 | 0.013 | 0.010 |
1 | Gao P X, Zhai J Y, Qu F Z,et al.Vibration and damping analysis of aerospace pipeline conveying fluid with constrained layer damping treatment[J].Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2018,232(8):1529-1541. |
2 | Pisarski D, Konowrocki R, Szmidt T.Dynamics and optimal control of an electromagnetically actuated cantilever pipe conveying fluid[J].Journal of Sound and Vibration,2018,432:420-436. |
3 | Ji W H, Sun W, Wang D H,et al.Optimization of aero‑engine pipeline for avoiding vibration based on length adjustment of straight‑line segment[J].Frontiers of Mechanical Engineering,2022,17(1):11. |
4 | 张禹,鹿浩,吕董,等.基于lMOFA的航空发动机管路多目标优化布局[J].东北大学学报(自然科学版),2022,43(8):1120-1126. |
Zhang Yu, Lu Hao, Dong Lyu,et al.Multi‑objective optimization layout of aero‑engine pipe routing based on IMOFA[J].Journal of Northeastern University (Natural Science),2022,43(8):1120-1126. | |
5 | Liu X D, Sun W, Gao Y,et al.Optimization of pipeline system with multi‑hoop supports for avoiding vibration,based on particle swarm algorithm[J].Proceedings of the Institution of Mechanical Engineers Science,Part C:Journal of Mechanical Engineering,2021,235(9):1524-1538. |
6 | 刘旭东,孙伟.多卡箍支撑的管路系统振动特性半解析建模及支撑位置优化[J].振动与冲击,2021,40(19):32-40. |
Liu Xu‑dong, Sun Wei.Semi‑analytical dynamic modeling and support location optimization of pipeline system with multi‑clamp support[J].Journal of Vibration and Shock,2021,40(19):32-40. | |
7 | 张宇,孙伟,刘旭东.充液管路振动特性半解析建模及卡箍布局优化[J].中南大学学报(自然科学版),2022,53(11):4262-4270. |
Zhang Yu, Sun Wei, Liu Xu‑dong.Semi‑analytical modeling of vibration characteristics for liquid‑filled pipeline and clamps layout optimization[J].Journal of Central South University(Science and Technology),2022,53(11):4262-4270. | |
8 | Zhang D C, Juan M X, Zhang Z Y,et al.A dynamic modeling approach for vibration analysis of hydraulic pipeline system with pipe fitting[J].Applied Acoustics,2022,197:108952. |
9 | Guo X M, Xiao C L, Ge H,et al.Dynamic modeling and experimental study of a complex fluid‑conveying pipeline system with series and parallel structures[J].Applied Mathematical Modelling,2022,109:186-208. |
10 | Zhang Y, Sun W, Ma H W,et al.Semi‑analytical modeling and vibration analysis for U-shaped,Z-shaped and regular spatial pipelines supported by multiple clamps[J].European Journal of Mechanics:A/Solids,2023,97:104797. |
11 | 刘中华,李建福,孙志航,等.考虑螺栓连接的航空发动机管路建模及振动特性分析[J].航空发动机,2021,47(6):45-49. |
Liu Zhong‑hua, Li Jian‑fu, Sun Zhi‑hang,et al.Modeling and analysis of vibration characteristics of aeroengine pipeline with bolt connection[J].Aeroengine,2021,47(6):45-49. | |
12 | Qu W, Zhang H L, Sun W Q,et al.Stress response of the hydraulic composite pipe subjected to random vibration[J].Composite Structures,2021,255:112958. |
13 | Li W, Zhang H L, Qu W.Stress response of a straight hydraulic pipe under random vibration[J].International Journal of Pressure Vessels and Piping,2021,194:104502. |
14 | Verma A K, Yadav B K, Gandhi A,et al.3D modelling of loop layout,pipe stress analysis and structural responses of high‑pressure high‑temperature experimental helium cooling loop (EHCL)[J].Fusion Engineering and Design,2019,145:87-93. |
15 | Wang D H, Sun W, Gao Z H,et al.Optimization of spatial pipeline with multi‑hoop supports for avoiding resonance problem based on genetic algorithm [J].Science Progress,2022,105(1):1-23. |
16 | Wang D H, Sun W, Gao Z H,et al.Vibration response analysis and hoop layout optimization of spatial pipeline under random excitation[J].Aircraft Engineering and Aerospace Technology,2022,94(8):1242-1251. |
17 | 高志辉,王东海,孙伟,等.L型管路系统动力学有限元建模及基于遗传算法的卡箍支撑位置优化[J].振动与冲击,2022,41(16):149-157,254. |
Gao Zhi‑hui, Wang Dong‑hai, Sun Wei,et al.Establishment of a dynamic finite element model of an L-type pipeline system and optimization of hoop supporting position based on the genetic algorithm[J].Journal of Vibration and Shock,2022,41(16):149-157,254. | |
18 | Zhang Y, Sun W, Ji W H,et al.Hoop layouts optimization for vibration reduction of L-shaped pipeline based on substructure‑analytical model and genetic algorithm[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2023,45(5):243. |
19 | Herrmann J, Haag T, Gaul L,et al.Experimental and numerical investigation of the dynamics in spatial fluid‑filled piping systems[J].The Journal of the Acoustical Society of America,2008,123(5):3422. |
20 | Zhang X T, Liu W, Zhang Y M,et al.Experimental investigation and optimization design of multi‑support pipeline system[J].Chinese Journal of Mechanical Engineering,2021,34(1):1-15. |
21 | Gao Y, Sun W.Inverse identification of the mechanical parameters of a pipeline hoop and analysis of the effect of preload[J].Frontiers of Mechanical Engineering,2019,14(3):358-368. |
22 | Guo X M, Ge H, Xiao C L,et al.Vibration transmission characteristics analysis of the parallel fluid‑conveying pipes system:numerical and experimental studies[J].Mechanical Systems and Signal Processing,2022,177:109180. |
23 | Meng L Q, Liu J X, Bi J M,et al.Multi‑objective optimization of plate heat exchanger for commercial electric vehicle based on genetic algorithm[J].Case Studies in Thermal Engineering,2023,41:102629. |
[1] | 李小彭, 付嘉兴, 刘海龙, 尹猛. 柔性空间机械臂RBF神经网络补偿滑模控制策略[J]. 东北大学学报(自然科学版), 2024, 45(9): 1258-1267. |
[2] | 郑智群, 黄贤振, 姜智元, 苗兴琳. 基于Kriging模型的螺旋波纹管流动换热特性及结构优化[J]. 东北大学学报(自然科学版), 2024, 45(7): 992-1001. |
[3] | 靖可, 刘宇, 李乐华. 面向订单装配系统(ATO)两阶段随机库存优化研究[J]. 东北大学学报(自然科学版), 2024, 45(6): 905-912. |
[4] | 房立金, 高跃, 曹新星, 巩云鹏. 基于NSGA-II的串联机器人几何参数公差的多目标优化分配[J]. 东北大学学报(自然科学版), 2024, 45(6): 829-836. |
[5] | 陆志国, 王逍. 基于B样条与鲸鱼优化算法的机械臂轨迹规划[J]. 东北大学学报(自然科学版), 2024, 45(5): 683-689. |
[6] | 齐锡晶, 张升进, 张梦星. 国有建筑业企业发展效率的评价与优化[J]. 东北大学学报(自然科学版), 2024, 45(1): 137-144. |
[7] | 王方, 王鹏, 焦育威. 优化算法中均值信息利用研究[J]. 东北大学学报(自然科学版), 2024, 45(1): 49-57. |
[8] | 马泽宁, 沙成满, 路明浩. 基于混合果蝇算法的桩锚支护深基坑临界滑面搜索[J]. 东北大学学报(自然科学版), 2024, 45(1): 120-128. |
[9] | 赵俊涛, 罗小川, 刘俊秘. 改进鲸鱼优化算法在机器人路径规划中的应用[J]. 东北大学学报(自然科学版), 2023, 44(8): 1065-1071. |
[10] | 康岩松, 臧顺来. 基于多种策略的改进粒子群优化算法[J]. 东北大学学报(自然科学版), 2023, 44(8): 1089-1097. |
[11] | 张家豪, 邹平, 魏事宇, 梁付强. 单激励三维超声车削加工技术的实验研究[J]. 东北大学学报(自然科学版), 2023, 44(8): 1152-1159. |
[12] | 刘晓熙, 姜慧研, 骆敏. 面向肝癌消融术的多约束最优穿刺路径规划算法[J]. 东北大学学报(自然科学版), 2023, 44(7): 922-930. |
[13] | 饶红艳, 王少杰, 侯亮, 苏德赢. 基于改进粒子群优化算法的混凝土泵车全局功率匹配[J]. 东北大学学报(自然科学版), 2023, 44(6): 840-848. |
[14] | 乔丽苹, 卢卫莉, 闵忠顺, 王者超. 地下水封洞库围岩块体稳定性与支护可靠性分析[J]. 东北大学学报(自然科学版), 2023, 44(4): 544-550. |
[15] | 耿蓉, 吴亚倩, 肖倩倩, 徐赛. 基于改进GRU算法的天基信息网资源预测研究[J]. 东北大学学报(自然科学版), 2023, 44(3): 305-314. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||