东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (6): 1-7.DOI: 10.12068/j.issn.1005-3026.2025.20230338

• 信息与控制 •    

基于图像融合技术的阿尔茨海默病检测研究

李志刚, 牟明凯, 胡德安, 项楠   

  1. 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004
  • 收稿日期:2023-12-21 出版日期:2025-06-15 发布日期:2025-09-01
  • 作者简介:李志刚(1975—),男,辽宁沈阳人,东北大学副教授.
  • 基金资助:
    河北省自然科学基金资助项目(F2020501040)

Research on Detection of Alzheimer Disease Based on Image Fusion Technology

Zhi-gang LI, Ming-kai MU, De-an HU, Nan XIANG   

  1. School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China. Corresponding author: LI Zhi-gang,E-mail: lizhigangneuq@vip. 163. com
  • Received:2023-12-21 Online:2025-06-15 Published:2025-09-01

摘要:

利用傅里叶变换红外衰减全反射光谱(FTIR-ATR)技术采集阿尔茨海默病(AD)患者血浆样本.根据血浆膜样本的FTIR-ATR光谱数据,利用格拉姆角场(GAF)和马尔可夫转移场(MTF)将光谱数据编码为二维图像,同时结合基于深度残差网络和注意力机制的神经网络模型,实现对阿尔茨海默病的筛查分类研究.实验结果表明,使用GAF-MTF-CNN模型能够有效提升光谱特征提取的准确率.同时,使用二维数据结合深度学习的方法比传统的分类方法具有更高的分类精度.采用GAF与MTF技术编码光谱为图像,结合改进残差神经网络,有效提升了AD筛查模型的泛化能力与诊断精准度,优化了筛查性能.

关键词: 近红外光谱, 阿尔茨海默病, 格拉姆角场, 马尔可夫转移场, 卷积神经网络

Abstract:

The plasma samples of Alzheimer disease(AD) patients are collected using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy technology. Based on the FTIR-ATR spectral data of the plasma membrane samples, the spectral data are encoded into two-dimensional images by utilizing the Gram angular field (GAF) and Markov transition field (MTF). Meanwhile, a neural network model based on the deep residual networks and attention mechanism is combined to conduct the screening and classification research on Alzheimer disease. The experimental results show that the GAF-MTF-CNN model can effectively improve the accuracy of spectral feature extraction. Additionally, the method of combining two-dimensional data with deep learning has better classification accuracy compared with traditional classification methods. Encoding spectrum into images using GAF and MTF techniques, and combining them with an improved residual neural network, effectively enhances the generalization ability and diagnostic accuracy of AD screening models, optimizing the screening performance.

Key words: near-infrared spectrum, Alzheimer disease, Gramian angular field (GAF), Markov transition field (MTF), convolutional neural networks (CNN)

中图分类号: