[1] |
Brown E E, Kuumar S, Raiji T K, et al. Anticipating and mitigating the impact of the COVID-19 pandemic on Alzheimer’s disease and related dementias[J]. American Journal of Geriatric Psychiatry, 2020, 28(7): 712-721.
|
[2] |
Sala A, Anderson D J, Breman P M, et al. Biofluid diagnostics by FTIR spectroscopy:a platform technology for cancer detection[J]. Cancer Letters, 2020, 477: 122-130.
|
[3] |
Backhaus J, Mueller R, Formanski N, et al. Diagnosis of breast cancer with infrared spectroscopy from serum samples[J]. Vibrational Spectroscopy, 2010, 52(2): 173-177.
|
[4] |
Harris C, Despa M, Kelly K. Design and fabrication of a cross flow micro heat exchanger[J]. Journal of Microelectromechanical Systems, 2000, 9(4): 502-508.
|
[5] |
Ollesch J, Heinze M, Michael H. It’s in your blood: spectral biomarker candidates for urinary bladder cancer from automated FTIR spectroscopy[J]. Journal of Biophotonics, 2014, 7(3/4): 210-221.
|
[6] |
单鹏,吴缀,何年, 等.基于ATR-FTIR光谱的γ-PGA发酵批次分类研究[J]. 东北大学学报(自然科学版), 2022, 43(10): 1376-1382.
|
|
Shan Peng, Wu Zhui, He Nian, et al. Research on batch classification of γ-polyglutamic-acid fermentation based on ATR-FTIR spectroscopy[J]. Journal of Northeastern University(Natural Science), 2022, 43(10): 1376-1382.
|
[7] |
Du Y, Xie F, Yin L F, et al. Breast cancer early detection by using Fourier-transform infrared spectroscopy combined with different classification algorithms[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 283: 121715.
|
[8] |
Ryzhikova E, Kazakov O, Halamkova L, et al. Raman spectroscopy of blood serum for Alzheimer’s disease diagnostics:specificity relative to other types of dementia[J]. Journal of Biophotonics, 2015, 8(7): 584-596.
|
[9] |
吕庆坤, 黄高忠. 外周血拉曼光谱在阿尔茨海默病诊断中的应用[J]. 中华老年多器官疾病杂志, 2017, 16(4): 313-316.
|
|
Qing-kun Lyu, Huang Gao-zhong. Application of Raman spectroscopy of peripheral blood in the diagnosis of Alzheimer’s disease[J]. Chinese Journal of Geriatric Multiple-Organ Diseases in the Elderly, 2017, 16(4): 313-316.
|
[10] |
Stahlschmidt S R, Ulfenborg B, Synnergren J. Multimodal deep learning for biomedical data fusion: a review[J]. Briefings in Bioinformatics, 2022, 23(2): 569.
|
[11] |
Wang Z G, Oates T. Imaging time-series to improve classification and imputation[EB/OL]. (2015-06-01) [2023-10-15]. .
|
[12] |
Wang Q Y, Pian F F, Wang M X, et al. Quantitative analysis of Raman spectra for glucose concentration in human blood using Gramian angular field and convolutional neural network[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 275: 121189.
|
[13] |
De Paula P O, da Silva C T B, de Faissol A R R, et al. Classification of image encoded SSVEP-based EEG signals using convolutional neural networks[J]. Expert Systems with Applications, 2023, 214(15): 119096.
|
[14] |
雷春丽, 夏奔锋, 薛林林, 等. 基于MTF-CNN的滚动轴承故障诊断方法[J]. 振动与冲击, 2022, 41(9): 151-158.
|
|
Lei Chun-li, Xia Ben-feng, Xue Lin-lin, et al. Rolling bearing fault diagnosis method based on MTF-CNN[J]. Journal of Vibration and Shock, 2022, 41(9): 151-158.
|
[15] |
Sun W, Zhou J, Sun B T, et al. Markov transition field enhanced deep domain adaptation network for milling tool condition monitoring[J]. Micromachines, 2022, 13(6): 873.
|
[16] |
张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10): 2305-2325.
|
|
Zhang Ke, Feng Xiao-han, Guo Yu-rong, et al. Overview of deep convolutional neural networks for image classification[J]. Journal of Image and Graphics, 2021, 26(10): 2305-2325.
|
[17] |
王一宁, 秦品乐, 李传朋, 等. 基于残差神经网络的图像超分辨率改进算法[J]. 计算机应用, 2018, 38(1): 246-254.
|
|
Wang Yi-ning, Qin Pin-le, Li Chuan-peng, et al. Improved algorithm of image super resolution based on residual neural network[J]. Journal of Computer Applications, 2018, 38(1): 246-254.
|
[18] |
车畅畅, 王华伟, 倪晓梅, 等. 基于深度残差收缩网络的滚动轴承故障诊断[J]. 北京航空航天大学学报, 2021, 47(7): 1399-1406.
|
|
Che Chang-chang, Wang Hua-wei, Ni Xiao-mei, et al. Fault diagnosis of rolling bearings based on deep residual shrinkage network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(7): 1399-1406.
|
[19] |
魏颖, 林子涵, 齐林, 等. 基于空间自注意力机制和深度特征重建的脑MR图像分割方法[J]. 东北大学学报(自然科学版), 2023, 44(2): 177-185.
|
|
Wei Ying, Lin Zi-han, Qi Lin, et al. Brain MR image segmentation based on spatial self-attention mechanism and depth feature reconstruction[J]. Journal of Northeastern University(Natural Science), 2023, 44(2): 177-185.
|
[20] |
Xu Z B, Lee C, Lyu Y Q, et al. Ensemble capsule network with an attention mechanism for the fault diagnosis of bearings from imbalanced data samples[J]. Sensors, 2022, 22(15): 5543.
|
[21] |
Yin Y Q, Li J C, Ling C J, et al. Fusing spectral and image information for characterization of black tea grade based on hyperspectral technology[J]. LWT, 2023, 185: 115150.
|