东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (5): 756-760.DOI: 10.12068/j.issn.1005-3026.2019.05.028

• 数学 • 上一篇    

一种求解鞍点问题的改进Uzawa-PSS方法

沈海龙, 李红丽, 邵新慧   

  1. (东北大学 理学院, 辽宁 沈阳110819)
  • 收稿日期:2018-04-04 修回日期:2018-04-04 出版日期:2019-05-15 发布日期:2019-05-17
  • 通讯作者: 沈海龙
  • 作者简介:沈海龙(1971-),男,吉林延吉人,东北大学讲师,博士; 邵新慧(1970-),女,山东青岛人,东北大学教授.
  • 基金资助:
    国家自然科学基金资助项目(11371081); 辽宁省自然科学基金资助项目(20170540323).

An Improved Uzawa-PSS Method for to Solve Point Problems

SHEN Hai-long, LI Hong-li, SHAO Xin-hui   

  1. School of Sciences, Northeastern University, Shenyang 110819, China.
  • Received:2018-04-04 Revised:2018-04-04 Online:2019-05-15 Published:2019-05-17
  • Contact: SHEN Hai-long
  • About author:-
  • Supported by:
    -

摘要: 主要针对非Hermitian鞍点问题,在已有Uzawa-PSS方法基础上构建了一种改进的Uzawa-PSS迭代法,其主要求解思想是在Uzawa-PSS方法的每一步迭代中需求解系数矩阵αI+P和αI+S的两个线性子系统.第一个子系统可用CG方法求解,但第二个子系统求解很困难.改进算法采用单步PSS迭代法逼近xk+1,然后用新方法分别求解了非奇异和奇异鞍点问题,并给出了相应的收敛性分析.数值仿真实验验证了改进Uzawa-PSS迭代法在迭代步数、占用CPU时间和相对残差上都有明显的优势.

关键词: 鞍点问题, 收敛, 半收敛, 奇异, 非奇异

Abstract: Aiming at the non-Hermitian saddle point problem, an improved Uzawa-PSS iteration method is constructed based on the existing Uzawa-PSS method. The main idea of the new method is to solve two linear subsystems in each iteration step of Uzawa-PSS method, whose coefficient matrices are αI+P and αI+S, respectively. The first subsystem can be solved by CG method, but the second subsystem is very difficult to solve. The improved algorithm uses the single-step PSS iteration method to approximate the problem. Then the new method is used to solve the non-singular and singular saddle point problems respectively, and the corresponding convergence analysis is given. The numerical simulation also proves that the improved Uzawa-PSS iteration method has obvious advantages in iteration steps, CPU time and relative residuals.

Key words: saddle point problem, convergence, semi-convergence, singular, nonsingular

中图分类号: