东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (2): 28-34.DOI: 10.12068/j.issn.1005-3026.2025.20230256

• 材料与冶金 • 上一篇    下一篇

基于JITL-XGBoost的烧结终点预测模型

王金杨, 吴朝霞(), 李中正, 康增鑫   

  1. 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004
  • 收稿日期:2023-08-31 出版日期:2025-02-15 发布日期:2025-05-20
  • 通讯作者: 吴朝霞
  • 作者简介:王金杨(1997—),男,内蒙古通辽人,东北大学硕士研究生
    吴朝霞(1969—),女,浙江嘉兴人,东北大学教授,硕士生导师.
  • 基金资助:
    河北省教育厅科学技术研究项目(BJ2021099)

Prediction Model of Burning Through Point Based on JITL-XGBoost

Jin-yang WANG, Zhao-xia WU(), Zhong-zheng LI, Zeng-xin KANG   

  1. School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China.
  • Received:2023-08-31 Online:2025-02-15 Published:2025-05-20
  • Contact: Zhao-xia WU

摘要:

烧结终点(burning through point,BTP)位置是烧结过程中重要的参数,直接影响烧结机效率.由于烧结生产过程具有多工况、时变等特性,使得全局模型预测性能不足,为此提出了一种在即时学习框架中使用极端梯度提升(extreme gradient boosting,XGBoost)作为局部模型的烧结终点预测模型,即JITL(just-in-time learning)-XGBoost.首先采用KL散度(Kullback-Leibler divergence)相似性度量方法提取待测样本的特性,选出与待测样本最相关的数据集.然后将该数据集作为XGBoost模型的输入来预测烧结终点的位置.此外,考虑了相关数据集数量对模型预测精度和计算时间的影响.最后与其他模型对比,结果表明,所建模型在合理的时间内具有最佳预测精度,为提高烧结机效率提供新的指导方向.

关键词: 烧结矿, 烧结终点, 预测模型, 即时学习, 极端梯度提升

Abstract:

The burning through point (BTP) is an important parameter in the sintering process, which directly affects the efficiency of the sintering machine. Due to the multi-working conditions and time-varying characteristics of the sintering production process, the prediction performance of the global model is insufficient. Therefore, a burning through point prediction model using XGBoost as a local model in the just-in-time learning framework is proposed, namely JITL-XGBoost. Firstly, the KL divergence similarity measurement method is used to extract the characteristics of the sample to be tested, and the most relevant data set of the sample to be tested is selected. Secondly, this dataset is used as input to the XGBoost model to predict the location of the burning through point. In addition, the impact of related dataset numbers on model prediction accuracy and model computation time is considered. Finally, by comparing with other models, the results show that the model built has the best prediction accuracy within a reasonable time, providing new guidance for improving the efficiency of sintering machines.

Key words: sintering ore, burning through point, prediction model, just-in-time learning, extreme gradient boosting

中图分类号: