东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (2): 35-41.DOI: 10.12068/j.issn.1005-3026.2025.20230261

• 材料与冶金 • 上一篇    下一篇

多道次变形条件下V-N微合金钢的流变应力模型

周晓光(), 赵金帆, 姜珊, 曹光明   

  1. 东北大学 数字钢铁全国重点实验室,辽宁 沈阳 110819
  • 收稿日期:2023-09-07 出版日期:2025-02-15 发布日期:2025-05-20
  • 通讯作者: 周晓光
  • 作者简介:周晓光(1978—),男,辽宁辽中人,东北大学副教授,博士生导师
    曹光明(1982—),男,四川绵阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家重点研发计划项目(2022YFB3304800);辽宁省科技专项项目(2022JH25/10200001);中国博士后科学基金资助项目(2022T150205)

Flow Stress Model for V-N Microalloyed Steel Under Multi-pass Deformation Conditions

Xiao-guang ZHOU(), Jin-fan ZHAO, Shan JIANG, Guang-ming CAO   

  1. State key Laboratory of Digital Steel,Northeastern University,Shenyang 110819,China
  • Received:2023-09-07 Online:2025-02-15 Published:2025-05-20
  • Contact: Xiao-guang ZHOU

摘要:

为建立多道次变形条件下V-N微合金钢的流变应力模型,采用DIL805热膨胀相变仪对实验钢进行了多道次压缩实验,并绘制了应力-应变曲线.Hensel-Spittel模型高精度地模拟了实验钢在单道次变形条件下的流变应力.当变形温度和应变速率不变时,采用遗传算法优化了多道次变形条件下Hensel-Spittel模型参数.基于支持向量机(support vector machine,SVM)算法建立了变形前静态再结晶体积分数、变形前奥氏体晶粒尺寸、位错密度、变形温度和应变速率与模型参数的对应关系.结果表明,多道次变形条件下流变应力预测值与实测值吻合良好.研究结果为精准描述多道次变形条件下V-N微合金钢的流变应力提供了有力的支持.

关键词: 流变应力, 遗传算法, 静态再结晶, 位错密度, 支持向量机算法

Abstract:

In order to establish the flow stress models of V-N microalloyed steel under multi-pass deformation conditions, multi-pass compression experiments were conducted on experimental steel using a DIL805 thermal expansion phase transformation tester, and the stress-strain curves were plotted. The flow stress of experimental steel was simulated with high accuracy by Hensel-Spittel model under single-pass deformation conditions. When the deformation temperature and strain rate remained constant, genetic algorithm was used to optimize the parameters of the Hensel-Spittel model under multi-pass deformation conditions. The support vector machine(SVM) algorithm was used to establish the corresponding relationships between the static recrystallization volume fraction before deformation, austenite grain size before deformation, dislocation density, deformation temperature, strain rate and the model parameters. The results show that the predicted flow stress under multi-pass deformation conditions is in good agreement with the measured values. The research results can provide strong support for accurately describing the flow stress of V-N microalloyed steel under multi-pass deformation conditions.

Key words: flow stress, genetic algorithm, static recrystallization, dislocation density, support vector machine algorithm

中图分类号: