Analytical Modeling and Vibration Analysis of Hard-Coated Splitter Blisk
GAO Feng1,2, SUN Wei1,2, NI Chen-bing1
1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China; 2. Key Laboratory of Vibration and Control of Aero-Propulsion System
GAO Feng, SUN Wei, NI Chen-bing. Analytical Modeling and Vibration Analysis of Hard-Coated Splitter Blisk[J]. Journal of Northeastern University Natural Science, 2019, 40(2): 244-250.
[1]王东艺,彭正华,詹洪飞,等.航空发动机压气机大小叶片技术[J].海军航空工程学院学报,2005,20(2):205-207.(Wang Dong-yi,Peng Zheng-hua,Zhan Hong-fei,et al.The magnitude blade technology of the aviation engine compressor[J].Journal of Naval Aeronautical and Astronautical University,2005,20(2):205-207.) [2]Yang W,Xiao R F,Wang F J,et al.Influence of splitter blades on the cavitation performance of a double suction centrifugal pump[J]. Advances in Mechanical Engineering,2014,6:963197. [3]Kassanos I,Anagnostopoulos J,Papantonis D.Numerical analysis of the effect of splitter blades on draft tube cavitation of a low specific speed Francis turbine[C/OL] // 6th IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems.Ljubljana,Slovenia,2015[2017-10-21].http://iahrwg2015.si/files/papers/1_Numerical_and_experimental_investigation_on_cavitating_flows/IAHR__WG_15_1_7_KASSANOS.pdf. [4]Guo X M,Zhu L H,Zhu Z C,et al.Numerical and experimental investigations on cavitation characteristics of a high-speed centrifugal pump with a splitter-blade inducer[J].Journal of Mechanical Science and Technology,2015,29(1):259-267. [5]Korkmaz E,Glcü M,Kurbanolu C.Effects of blade discharge angle,blade number and splitter blade length on deep well pump performance[J]. Journal of Applied Fluid Mechanics,2017,10(2):529-540. [6]Torshizi S A M,Benisi A H,Durali M.Multilevel optimization of the splitter blade profile in the impeller of a centrifugal compressor[J].Scientia Iranica,2017,24(2):707-714. [7]Zhao P F,Zhang Q,Wu J,et al.Experimental study of dynamic characteristics of dry friction damping of turbine blade steel[J].Advanced Materials Research,2013,690/691/692/693:1979-1982. [8]Li G,Zhang Q,Zhao W,et al.Dynamic response analysis of blades with damping structures of shroud and snubber[C]//First International Conference on Information Sciences,Machinery,Materials and Energy.[S.l.]:Atlantis Press,2015:281-284. [9]He B,Ouyang H,Ren X,et al.Dynamic response of a simplified turbine blade model with under-platform dry friction dampers considering normal load variation[J/OL].Applied Sciences,2017,7(3):228[2017-9-25].https://www.mdpi.com/2076-3417/7/3/228/htm. [10]Ghaderi A A,Mohammadzadeh A,Bahrami M N.Optimum design of damped vibration absorber for viscoelastic bladed disk assemblies[J].Mechanics,2015,21(6):465-471. [11]Meng J,Sun D.Research on vibration suppression of wind turbine blade based on bamboo wall three-layer damping structure[J].Journal of Vibroengineering,2017,19(1):87-99. [12]Zhou B,Thouverez F,Lenoir D.An adaptive control strategy based on passive piezoelectric shunt techniques applied to mistuned bladed disks[J].Journal of Computational and Applied Mathematics,2013,246:289-300. [13]Alsayed E Z,Hariri I,Nakashima S,et al.Effects of coating materials on nano-indentation hardness of enamel and adjacent areas[J].Dental Materials,2016,32(6):807-816. [14]Shao F,Yang K,Zhao H,et al.Effects of inorganic sealant and brief heat treatments on corrosion behavior of plasma sprayed Cr2O3-Al2 O3 composite ceramic coatings[J].Surface and Coatings Technology,2015,276:8-15. [15]Stathopoulos V,Sadykov V,Pavlova S,et al.Design of functionally graded multilayer thermal barrier coatings for gas turbine application[J].Surface and Coatings Technology,2016,295:20-28. [16]Ganvir A,Markocsan N,Joshi S.Influence of isothermal heat treatment on porosity and crystallite size in axial suspension plasma sprayed thermal barrier coatings for gas turbine applications[J].Coatings,2016,7(1):4-27. [17]Yang Z X,Han Q K,Jin Z H,et al.Solution of natural characteristics of a hard-coating plate based on Lindstedt-Poincaré perturbation method and its valedictions by FEM and measurement[J].Nonlinear Dynamics,2015,81(3):1207-1218. [18]Sun W,Liu Y.Vibration analysis of hard-coated composite beam considering strain dependent characteristic of coating material[J].Acta Mechanica Sinica,2016,32(4):731-742. [19]Zhang Y,Sun W,Yang J,et al.Nonlinear vibration analysis of a hard-coating cylindrical shell with elastic constraints by finite element method[J].Nonlinear Dynamics,2017,90(4):2879-2891. [20]Sanliturk K Y,Koruk H.Development and validation of a composite finite element with damping capability[J].Composite Structures,2013,97:136-146. [21]王娇.叶片阻尼结构的振动分析方法及其阻尼抑振效果研究[D].沈阳:东北大学,2013.(Wang Jiao.Research on vibration analysis methods and vibration suppression effect of damping structure of blade[D].Shenyang:Northeastern University,2013.) [22]Jin G,Yang C,Liu Z.Vibration and damping analysis of sandwich viscoelastic-core beam using Reddy’s higher-order theory[J].Composite Structures,2016,140:390-409.(上接第243页)5结论1) 脆性材料车削表面粗糙度由几何干涉粗糙度和脆性崩碎粗糙度组成.刀具几何形状和进给量主要影响几何干涉粗糙度;工件力学性能、切削速度、切削深度和切削力主要影响脆性崩碎粗糙度.2) 刀具对工件材料的挤压会在表面诱发裂纹,而刀具与工件的相对运动造成了裂纹的扩展与切屑的断裂.脆性材料车削表面形貌是切屑单元周期性断裂的结果.3) 氟金云母陶瓷车削表面粗糙度随切削速度的增大而减小,随进给量的增大而增大,随切削深度的增大而增大.脆性材料粗糙度理论模型能够很好地预测趋势,与传统的几何模型相比,更接近实验值.