Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (10): 1417-1424.DOI: 10.12068/j.issn.1005-3026.2024.10.007
• Mechanical Engineering • Previous Articles
Zai-you YANG, Hao LYU, Ya-ping ZHAO()
Received:
2023-05-15
Online:
2024-10-31
Published:
2024-12-31
Contact:
Ya-ping ZHAO
About author:
ZHAO Ya-ping,E-mail: zhyp_neu@163.comCLC Number:
Zai-you YANG, Hao LYU, Ya-ping ZHAO. Reliability Evaluation Method of Degraded Structures Based on Random Distribution Characteristics[J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1417-1424.
MC仿真计算可靠度算法:Nm,t→P(t) |
---|
输入:Nm,t |
输出:P(t) |
1. 设置仿真次数Nm=106 ,计算时间为t; |
2. 产生随机数x(k):x(k)~U[0,1],k=1,2,…,Nm; |
3. 计算随机数x(k)对应的时间y(k): y(k)=-log(1-x(k))/λ; |
4. 根据 |
5. 设置计算变量的初始值:N1=0,N2=0; |
6. For k=1 to k=Nm; |
7. if y(k)<t; |
8. N1=N1+1; |
9. N2=N2+P(k); |
10. End |
11.End |
12.P(t)=(N2/N1); |
13.Return P(t). |
Table 1 Structural reliability of the first shock load calculated by the MC simulation algorithm
MC仿真计算可靠度算法:Nm,t→P(t) |
---|
输入:Nm,t |
输出:P(t) |
1. 设置仿真次数Nm=106 ,计算时间为t; |
2. 产生随机数x(k):x(k)~U[0,1],k=1,2,…,Nm; |
3. 计算随机数x(k)对应的时间y(k): y(k)=-log(1-x(k))/λ; |
4. 根据 |
5. 设置计算变量的初始值:N1=0,N2=0; |
6. For k=1 to k=Nm; |
7. if y(k)<t; |
8. N1=N1+1; |
9. N2=N2+P(k); |
10. End |
11.End |
12.P(t)=(N2/N1); |
13.Return P(t). |
转数×10-4 | MC仿真 可靠度 | 文献[ | 本文方法 | 文献[ | |||
---|---|---|---|---|---|---|---|
可靠度 | RE/% | 可靠度 | RE/% | 可靠度 | RE/% | ||
2 | 0.974 559 | 0.974 022 | 0.06 | 0.974 558 | 0 | 0.616 038 | 36.79 |
5 | 0.971 183 | 0.966 536 | 0.48 | 0.971 192 | 0 | 0.891 471 | 8.21 |
8 | 0.968 472 | 0.950 476 | 1.86 | 0.968 547 | -0.01 | 0.950 808 | 1.82 |
Table 2 Comparison of relative errors by calculation methods
转数×10-4 | MC仿真 可靠度 | 文献[ | 本文方法 | 文献[ | |||
---|---|---|---|---|---|---|---|
可靠度 | RE/% | 可靠度 | RE/% | 可靠度 | RE/% | ||
2 | 0.974 559 | 0.974 022 | 0.06 | 0.974 558 | 0 | 0.616 038 | 36.79 |
5 | 0.971 183 | 0.966 536 | 0.48 | 0.971 192 | 0 | 0.891 471 | 8.21 |
8 | 0.968 472 | 0.950 476 | 1.86 | 0.968 547 | -0.01 | 0.950 808 | 1.82 |
参数 | 数值 | 来源 |
---|---|---|
D0/ GPa | 1.5 | 文献[ |
βd1/(GPa·r-1) | 5×10-6 | 近似假设 |
βd2/(GPa·r-1) | 1×10-5 | 对比假设 |
μ/ GPa | 1.2 | 文献[ |
σ/ GPa | 0.2 | 文献[ |
λ1/ r | 6×10-5 | 对比假设 |
λ2/ r | 5×10-5 | 文献[ |
Table 3 MEMS parameters
参数 | 数值 | 来源 |
---|---|---|
D0/ GPa | 1.5 | 文献[ |
βd1/(GPa·r-1) | 5×10-6 | 近似假设 |
βd2/(GPa·r-1) | 1×10-5 | 对比假设 |
μ/ GPa | 1.2 | 文献[ |
σ/ GPa | 0.2 | 文献[ |
λ1/ r | 6×10-5 | 对比假设 |
λ2/ r | 5×10-5 | 文献[ |
转数×10-4 | MC仿真 可靠度 | 文献[ | 本文方法 | 文献[ | |||
---|---|---|---|---|---|---|---|
可靠度 | RE/% | 可靠度 | RE/% | 可靠度 | RE/% | ||
3 | 0.262 698 | 0.257 366 | 2.03 | 0.262 732 | 0.01 | 0.204 109 | 22.30 |
6 | 0.083 124 | 0.074 339 | 10.57 | 0.083 143 | 0.02 | 0.079 004 | 4.94 |
9 | 0.020 184 | 0.015 242 | 24.48 | 0.020 181 | 0.01 | 0.019 957 | 1.12 |
Table 4 Comparison of relative errors by calculation methods with parameters λ1 and βd1
转数×10-4 | MC仿真 可靠度 | 文献[ | 本文方法 | 文献[ | |||
---|---|---|---|---|---|---|---|
可靠度 | RE/% | 可靠度 | RE/% | 可靠度 | RE/% | ||
3 | 0.262 698 | 0.257 366 | 2.03 | 0.262 732 | 0.01 | 0.204 109 | 22.30 |
6 | 0.083 124 | 0.074 339 | 10.57 | 0.083 143 | 0.02 | 0.079 004 | 4.94 |
9 | 0.020 184 | 0.015 242 | 24.48 | 0.020 181 | 0.01 | 0.019 957 | 1.12 |
转数×10-4 | MC仿真 可靠度 | 文献[ | 本文方法 | 文献[ | |||
---|---|---|---|---|---|---|---|
可靠度 | RE/% | 可靠度 | RE/% | 可靠度 | RE/% | ||
3 | 0.239 684 | 0.224 861 | 6.18 | 0.239 610 | 0.03 | 0.186 145 | 22.34 |
6 | 0.070 255 | 0.049 609 | 29.39 | 0.070 163 | 0.13 | 0.066 670 | 5.10 |
9 | 0.016 769 | 0.008 400 | 49.91 | 0.016 742 | 0.16 | 0.016 556 | 1.27 |
Table 5 Comparison of relative errors of calculation methods with parameters λ1 and βd2
转数×10-4 | MC仿真 可靠度 | 文献[ | 本文方法 | 文献[ | |||
---|---|---|---|---|---|---|---|
可靠度 | RE/% | 可靠度 | RE/% | 可靠度 | RE/% | ||
3 | 0.239 684 | 0.224 861 | 6.18 | 0.239 610 | 0.03 | 0.186 145 | 22.34 |
6 | 0.070 255 | 0.049 609 | 29.39 | 0.070 163 | 0.13 | 0.066 670 | 5.10 |
9 | 0.016 769 | 0.008 400 | 49.91 | 0.016 742 | 0.16 | 0.016 556 | 1.27 |
转数×10-4 | MC仿真 可靠度 | 文献[ | 本文方法 | 文献[ | |||
---|---|---|---|---|---|---|---|
可靠度 | RE/% | 可靠度 | RE/% | 可靠度 | RE/% | ||
3 | 0.295 596 | 0.289 506 | 2.06 | 0.295 543 | 0.02 | 0.229 598 | 22.33 |
6 | 0.126 254 | 0.112 878 | 10.59 | 0.126 247 | 0.01 | 0.119 961 | 4.98 |
9 | 0.041 345 | 0.031 240 | 24.22 | 0.041 365 | -0.05 | 0.040 905 | 1.06 |
Table 6 Comparison of relative errors of calculation methods with parameters λ2 and βd1
转数×10-4 | MC仿真 可靠度 | 文献[ | 本文方法 | 文献[ | |||
---|---|---|---|---|---|---|---|
可靠度 | RE/% | 可靠度 | RE/% | 可靠度 | RE/% | ||
3 | 0.295 596 | 0.289 506 | 2.06 | 0.295 543 | 0.02 | 0.229 598 | 22.33 |
6 | 0.126 254 | 0.112 878 | 10.59 | 0.126 247 | 0.01 | 0.119 961 | 4.98 |
9 | 0.041 345 | 0.031 240 | 24.22 | 0.041 365 | -0.05 | 0.040 905 | 1.06 |
1 | Zhao Y P, Zhang Y M.Reliability design and sensitivity analysis of cylindrical worm pairs[J].Mechanism and Machine Theory,2014,82:218-230. |
2 | Lyu H, Zhang X W, Yang Z Y,et al .Reliability analysis for the dependent competing failure with wear model and its application to the turbine and worm system[J].IEEE Access,2021,9:50265-50280. |
3 | 郭凡逸,孙志礼,张胜男,等.一种微位移柔顺放大机构的优化设计[J].东北大学学报(自然科学版),2022,43(7):996-1002. |
Guo Fan‑yi, Sun Zhi‑li, Zhang Sheng‑nan,et al .Optimal design of a micro‑displacement compliant amplification mechanism[J].Journal of Northeastern University (Natural Science),2022,43(7):996-1002. | |
4 | Xie L Y, Zhou J Y, Hao C Z.System‑level load‑strength interference based reliability modeling of k‑out‑of‑n system[J].Reliability Engineering and System Safety,2004,84(3):311-317. |
5 | Huang X Z, Jin S J, He X F,et al.Reliability analysis of coherent systems subject to internal failures and external shocks[J].Reliability Engineering and System Safety,2019,181:75-83. |
6 | Bozbulut A R, Eryilmaz S.Generalized extreme shock models and their applications[J].Communications in Statistics-Simulation and Computation,2020,49(1):110-120. |
7 | Gut A.Mixed shock models[J].Bernoulli,2001,7(3):541-555. |
8 | Lyu H, Yang Z Y, Wang S,et al.Reliability modeling for multistage systems subject to competing failure processes[J].Quality and Reliability Engineering International,2021,37(6):2936-2949. |
9 | Chang M X, Huang X Z, Coolen F P A,et al.Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels[J].Reliability Engineering & System Safety,2021,216:108007. |
10 | Hao S H, Yang J.Reliability analysis for dependent competing failure processes with changing degradation rate and hard failure threshold levels[J].Computers & Industrial Engineering,2018,118:340-351. |
11 | Liu W G, Wang X G, Li S J,et al.Study on the effect of failure threshold change rate on product reliability based on performance degradation[J].Journal of Failure Analysis and Prevention,2020,20(2):448-454. |
12 | Hao S H, Yang J, Ma X B,et al.Reliability modeling for mutually dependent competing failure processes due to degradation and random shocks[J].Applied Mathematical Modelling,2017,51:232-249. |
13 | Rafiee K, Feng Q M, Coit D W.Reliability analysis and condition‑based maintenance for failure processes with degradation‑dependent hard failure threshold[J].Quality and Reliability Engineering International,2017,33(7):1351-1366. |
14 | Wang C.Structural reliability and time‑dependent reliability[M].Cham:Springer International Publishing,2021. |
15 | Tanner D M, Dugger M T.Wear mechanisms in a reliability methodology[C]//Reliability,Testing,and Characterization of MEMS/MOEMS II.San Jose,2003:22-40. |
16 | Tanner D M, Walraven J A, Helgesen K,et al.MEMS reliability in shock environments[C]//IEEE International Reliability Physics Symposium.San Jose:IEEE,2000:129-138. |
[1] | QIAO Li-ping, LU Wei-li, MIN Zhong-shun, WANG Zhe-chao. Reliability Analysis of Rock Block Stability and Support for Underground Water-Sealed Storage Caverns [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 544-550. |
[2] | GENG Jian, WANG Xiao-dong, GUO Mei-ru, REN Zheng-yi. Effects of the Length of the Anode Cylinder in the Miniature Sputter Ion Pump on the Pumping Characteristics [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1596-1603. |
[3] | ZHA Cong-yi, SUN Zhi-li, PAN Chen-rong, WANG Jian. Parallel Adaptive Sampling Strategy for Structural Reliability Analysis [J]. Journal of Northeastern University(Natural Science), 2023, 44(1): 76-82. |
[4] | YANG Bo-wen, HUO Jun-zhou, ZHANG Wei, ZHANG Zhan-ge. Research on Real-Time Overload Prediction Method of in-Service Structures [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 541-550. |
[5] | CAO Ru-nan, SUN Zhi-li, GUO Fan-yi, WANG Jian. Time-Dependent Reliability Algorithm Based on Kriging and Monte Carlo [J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 658-664. |
[6] | KANG Yu-mei, LI Jia-qi, LIU Zi-ao, YU Jia-yue. Reliability Study of Prefabricated Box Culvert Components Based on Probability Density Evolution Method [J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1782-1789. |
[7] | YU Zhen-liang, SUN Zhi-li, ZHANG Yi-bo, WANG Jian. A Structural Reliability Analysis Method Based on Adaptive PC-Kriging Model [J]. Journal of Northeastern University Natural Science, 2020, 41(5): 667-672. |
[8] | ZHANG Yi-bo, SUN Zhi-li, YAN Yu-tao, WANG Jian. A Reliability Analysis Method Based on Relative Error Estimation of Failure Probability [J]. Journal of Northeastern University Natural Science, 2020, 41(2): 229-234. |
[9] | YANG Zhou, HU Quan-quan, ZHANG Yi-min, GUO Bing-shuai. Reliability Analysis of Wear Gradient of Automobile Parts [J]. Journal of Northeastern University Natural Science, 2019, 40(3): 360-364. |
[10] | YU Zhen-liang, SUN Zhi-li, CAO Ru-nan, ZHANG Yi-bo. Reliability Analysis of Gear Heat Transfer Error Based on PC-Kriging Model and Active Learning [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1750-1754. |
[11] | KANG Yu-mei, LIU Zi-ao, WU Peng-fei. Structural Reliability Analysis Method Considering Load Sequence [J]. Journal of Northeastern University Natural Science, 2019, 40(11): 1648-1653. |
[12] | MA Liang, XIAO Ping, WANG Ren-sheng, XIU Shi-chao. An Isolated Chain Rheological Shear Stress Model with Distance Weighted Coefficients [J]. Journal of Northeastern University Natural Science, 2018, 39(2): 226-231. |
[13] | LIU Kuo, LI Xiao-lei, WANG Jian. An Analysis Method of Mechanical Structural Reliability Based on the Kriging Model [J]. Journal of Northeastern University Natural Science, 2017, 38(7): 1002-1006. |
[14] | ZHENG Xin, AN Hua-ming, ZHANG Fang, XU Kai-li. Risk Control on Life Loss During Tailings Dam Break [J]. Journal of Northeastern University Natural Science, 2017, 38(4): 566-570. |
[15] | NING Dan-feng, CHEN Wan-chun, YANG Ming-hui, SUN Yan-jie. Vehicle Angular Variation Control Based on State Space Model [J]. Journal of Northeastern University Natural Science, 2017, 38(10): 1421-1425. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||