Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (6): 76-85.DOI: 10.12068/j.issn.1005-3026.2025.20230333
• Mechanical Engineering • Previous Articles Next Articles
Xue-long WEN, Zheng-hao ZHAO, Lin-yuan SONG, Cheng-bao WANG
Received:
2023-12-15
Online:
2025-06-15
Published:
2025-09-01
CLC Number:
Xue-long WEN, Zheng-hao ZHAO, Lin-yuan SONG, Cheng-bao WANG. Experimental Study on Mechanical Properties of FeCoNiCr High-Entropy Alloy by Selective Laser Melting[J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 76-85.
粒径/μm | FeCoNiCrAl0.5(混合粉) | FeCoNiCrAl0.5(合金粉) | FeCoNiCrTi0.5(混合粉) |
---|---|---|---|
总计 | 100 | 100 | 100 |
10~20 | 63.90 | 37.4 | 31.2 |
>20~30 | 23.90 | 39.8 | 36.4 |
>30~40 | 8.90 | 13.5 | 17.8 |
>40~50 | 3.15 | 6.9 | 8.4 |
>50~60 | 0.10 | 1.8 | 4.4 |
>70~110 | 0.05 | 0.6 | 1.8 |
Table 1 Statistical table of powder particle size (mass fraction)
粒径/μm | FeCoNiCrAl0.5(混合粉) | FeCoNiCrAl0.5(合金粉) | FeCoNiCrTi0.5(混合粉) |
---|---|---|---|
总计 | 100 | 100 | 100 |
10~20 | 63.90 | 37.4 | 31.2 |
>20~30 | 23.90 | 39.8 | 36.4 |
>30~40 | 8.90 | 13.5 | 17.8 |
>40~50 | 3.15 | 6.9 | 8.4 |
>50~60 | 0.10 | 1.8 | 4.4 |
>70~110 | 0.05 | 0.6 | 1.8 |
激光工艺参数 | 水平 | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
激光功率/W | 250 | 300 | 350 | 400 |
扫描速度/(mm·s-1) | 600 | 700 | 800 | 900 |
扫描间距/μm | 50 | 60 | 70 | 80 |
Table 2 Orthogonal experiment parameters
激光工艺参数 | 水平 | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
激光功率/W | 250 | 300 | 350 | 400 |
扫描速度/(mm·s-1) | 600 | 700 | 800 | 900 |
扫描间距/μm | 50 | 60 | 70 | 80 |
[1] | 韩金灿. BCC/B2共格析出强化的难熔高熵合金微观组织与力学性能研究[D].大连: 大连理工大学,2021. |
Han Jin-can. Study on microstructure and mechanical properties of refractory high entropy alloy strengthened by BCC/B2 coherent precipitation [D]. Dalian: Dalian University of Technology,2021. | |
[2] | 闫德隆.三种特殊高熵合金的微观结构和性能研究[D].济南: 山东大学,2020. |
Yan De-long. Study on microstructure and properties of three special high-entropy alloys [D]. Jinan: Shandong University,2020. | |
[3] | Ma H, Shek C H. Effects of Hf on the microstructure and mechanical properties of CoCrFeNi high entropy alloy[J]. Journal of Alloys and Compounds, 2020, 827:154159. |
[4] | Zhang A J, Han J S, Meng J H, et al. Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture[J]. Materials Letters, 2016, 181:82-85. |
[5] | Zhang C, Liu B, Liu Y, et al. Effects of annealing on microstructure and mechanical properties of metastable powder metallurgy CoCrFeNiMo0.2 high entropy alloy[J]. Entropy, 2019, 21(5):448-457. |
[6] | Vida A, Varga L K, Chinh N Q, et al. Effects of the sp element additions on the microstructure and mechanical properties of NiCoFeCr based high entropy alloys[J]. Materials Science and Engineering: A, 2016, 669 :14-19. |
[7] | Shen Q K, Xue J X, Yu X Y, et al. Powder plasma arc additive manufacturing of CoCrFeNiW x high-entropy alloys: microstructure evolution and mechanical properties[J]. Journal of Alloys and Compounds,2022,922:166245. |
[8] | Ma G L, Zhao Y, Cui H Z, et al. Addition Al and/or Ti induced modifications of microstructures, mechanical properties, and corrosion properties in CoCrFeNi high-entropy alloy coatings[J]. Acta Metallurgica Sinica (English Letters),2021, 34(8):1087-1102. |
[9] | Ye X C, Xu W Q, Li Z, et al. Microstructures and mechanical properties of FeNiCrMnAl high-entropy alloys[J]. Journal of Materials Engineering and Performance, 2022,31(10):7820-7829. |
[10] | Kim Y K, Yu J H, Kim H S, et al. In-situ carbide-reinforced CoCrFeMnNi high-entropy alloy matrix nanocomposites manufactured by selective laser melting: carbon content effects on microstructure, mechanical properties, and deformation mechanism [J]. Composites Part B: Engineering, 2021, 210: 108638. |
[11] | Ma P, Fang Y C, Wei S M, et al. Microstructure and mechanical properties of AlCoCrFeMnNi HEAs fabricated by selective laser melting[J]. Journal of Materials Research and Technology, 2023,25:7090-7100. |
[12] | Bai Q F, Ouyang C Y, Wang R, et al. Effects of power spinning on the microstructure and mechanical properties of Fe-based alloy coating fabricated by laser cladding[J]. Transactions of the Indian Institute of Metals, 2022,75(6):1451-1459. |
[13] | Zhang L, Wang C S, Han L Y, et al. Influence of laser power on microstructure and properties of laser clad Co-based amorphous composite coatings [J]. Surfaces and Interfaces, 2017, 6: 18-23. |
[1] | He ZHANG, Chao-jie LIANG, Cong SUN. Surface Strengthening Mechanism of Laser Heat-Assisted Carburizing Grinding of 20CrMnTi [J]. Journal of Northeastern University(Natural Science), 2025, 46(5): 54-61. |
[2] | Bo HAO, Yu-xin ZHAO, Xin-yan XU. Design and Mechanical Performance of Triangular Function Density Gradient Skin Lattice Structures [J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 69-79. |
[3] | Shu-hong WANG, Chen-xiang GAO, Qin-kuan HOU. Application of Improved Density Peak Clustering Algorithm in Dominant Grouping of Rock Discontinuities [J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 130-137. |
[4] | Xiao-guang ZHOU, Jin-fan ZHAO, Shan JIANG, Guang-ming CAO. Flow Stress Model for V-N Microalloyed Steel Under Multi-pass Deformation Conditions [J]. Journal of Northeastern University(Natural Science), 2025, 46(2): 35-41. |
[5] | Shang-wu YANG, Hai-xia QU, Heng-jun LI, Chang-sheng LIU. Properties of (Ti,W)C Particles Reinforced Ni-based Coating by Laser Cladding [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 953-959. |
[6] | Meng-qi WANG, Yue LIU, Chun-lin XIAO, Chun-ming LIU. Effect of SiCp Particle Size Grading on the Microstructure and Properties of 55%SiCp/6061Al Composites [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 802-807. |
[7] | Jin-zhe JIANG, Yue LIU, Chun-ming LIU. Regulation of Secondary Carbide Characteristics and Its Effect on Wear Resistance of High Carbon High Alloy Martensitic Steel [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 490-498. |
[8] | Qing-feng ZHU, Jian-hang HUANG, Yang GAO, En-ge ZHANG. Effects of Stabilizing Annealing Temperature on Microstructure and Properties of Cold-Rolled 5059 Aluminum Alloy Plate [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 323-330. |
[9] | Zeng-xin KANG, Jin-chao CHEN, Jin-yang WANG, Zhao-xia WU. Interval Prediction Model of RF-ET-KDE Sintering Process Physical Index Based on Stacking Integration [J]. Journal of Northeastern University(Natural Science), 2024, 45(10): 1369-1378. |
[10] | WUSIMAN Kuerbanjiang, DAI Xiao-ye, SHI Lin. Effects of Phase Change Materials on the Heat Transfer Rate of Thermal Energy Storage System [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1292-1298. |
[11] | LIU Jun-ru, ZHANG Guo-hua, ZHOU Guo-zhi. Effect of w(Fe)/w(Ni) Ratio on Mo2FeB2 Based Cermet [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1269-1278. |
[12] | WANG En-de, SHEN Jian, LI Bin, YUAN Kun. Accurate Detection of Goaf in Open-pit Iron Mine Based on 3D High-density Resistivity Method [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 996-1001. |
[13] | YI Ping-tao, YUAN Jian-rong, LI Wei-wei. Hierarchical Dimensionless Method Based on Data Distribution Characteristics and Its Equilibrium Analysis [J]. Journal of Northeastern University(Natural Science), 2023, 44(6): 889-897. |
[14] | WANG Hai-tao, LI Jia-dong, DENG Xiang-tao, WANG Zhao-dong. Effect of Solution Temperature on Microstructure and Mechanical Properties of Fe-20Mn-9Al-1.2C Low-Density Steel [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 609-616. |
[15] | GAO Yan-peng, CHEN Wen-jun. Study on Spatio-Temporal Evolution and Influencing Factors of Development Intensity in Shenyang’s Five Districts [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 743-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||