
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (10): 51-58.DOI: 10.12068/j.issn.1005-3026.2025.20240051
• Materials & Metallurgy • Previous Articles Next Articles
Deng-hui LI1,2, Yan ZHAO2, Hong LEI1,2, Jia FAN3
Received:2024-03-05
Online:2025-10-15
Published:2026-01-13
CLC Number:
Deng-hui LI, Yan ZHAO, Hong LEI, Jia FAN. Intelligent Prediction for Endpoint Mass Fraction of Carbon in Molten Steel of RH[J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 51-58.
| 特征变量 | 最大值 | 最小值 | 上边缘值 | 下边缘值 | 处理前极差 | 处理后极差 |
|---|---|---|---|---|---|---|
| A/℃ | 1 676 | 0 | 1 642 | 1 593 | 1 676 | 49 |
| B×106 | 872 | 1 | 688 | 243 | 871 | 445 |
| C/t | 3 882 | 350 | 411 | 365 | 3 532 | 46 |
| D×106 | 830 | 0 | 605 | 212 | 830 | 393 |
| E | 94 | 2 | 86 | 2 | 92 | 84 |
| F/min | 77 | 27 | 57 | 34 | 50 | 23 |
| G/min | 39 | 13 | 34 | 24 | 26 | 10 |
| H/℃ | 1 285 | 0 | 1 228 | 887 | 1 285 | 341 |
| I/m3 | 343 | 0 | 204 | 0 | 343 | 204 |
| J/kg | 10 186 | 0 | 248 | 0 | 10 186 | 248 |
| K/kg | 20 669 | 0 | 701 | 638 | 20 669 | 63 |
| L/kg | 497 | 168 | 370 | 177 | 329 | 193 |
| M×106 | 446 | 117 | 405 | 244 | 329 | 161 |
| N×106 | 1 700 | 6 | 27 | 7 | 1 694 | 20 |
Table 1 Statistics of data characteristics before and after box plot processing
| 特征变量 | 最大值 | 最小值 | 上边缘值 | 下边缘值 | 处理前极差 | 处理后极差 |
|---|---|---|---|---|---|---|
| A/℃ | 1 676 | 0 | 1 642 | 1 593 | 1 676 | 49 |
| B×106 | 872 | 1 | 688 | 243 | 871 | 445 |
| C/t | 3 882 | 350 | 411 | 365 | 3 532 | 46 |
| D×106 | 830 | 0 | 605 | 212 | 830 | 393 |
| E | 94 | 2 | 86 | 2 | 92 | 84 |
| F/min | 77 | 27 | 57 | 34 | 50 | 23 |
| G/min | 39 | 13 | 34 | 24 | 26 | 10 |
| H/℃ | 1 285 | 0 | 1 228 | 887 | 1 285 | 341 |
| I/m3 | 343 | 0 | 204 | 0 | 343 | 204 |
| J/kg | 10 186 | 0 | 248 | 0 | 10 186 | 248 |
| K/kg | 20 669 | 0 | 701 | 638 | 20 669 | 63 |
| L/kg | 497 | 168 | 370 | 177 | 329 | 193 |
| M×106 | 446 | 117 | 405 | 244 | 329 | 161 |
| N×106 | 1 700 | 6 | 27 | 7 | 1 694 | 20 |
| 目标序列 | 比较序列 | 灰色关联度 |
|---|---|---|
| N×106 | A/℃ | 0.841 2 |
| B×106 | 0.833 6 | |
| D×106 | 0.827 1 | |
| I/m3 | 0.815 3 | |
| E | 0.813 0 | |
| F/min | 0.800 3 | |
| G/min | 0.783 1 | |
| H/℃ | 0.774 6 | |
| J/kg | 0.762 4 | |
| M×106 | 0.731 3 | |
| K/kg | 0.656 8 | |
| L/kg | 0.604 5 | |
| C/t | 0.530 1 |
Table 2 Grey correlation of comparison series
| 目标序列 | 比较序列 | 灰色关联度 |
|---|---|---|
| N×106 | A/℃ | 0.841 2 |
| B×106 | 0.833 6 | |
| D×106 | 0.827 1 | |
| I/m3 | 0.815 3 | |
| E | 0.813 0 | |
| F/min | 0.800 3 | |
| G/min | 0.783 1 | |
| H/℃ | 0.774 6 | |
| J/kg | 0.762 4 | |
| M×106 | 0.731 3 | |
| K/kg | 0.656 8 | |
| L/kg | 0.604 5 | |
| C/t | 0.530 1 |
| 排序 | 特征变量 | 袋外数据误差 |
|---|---|---|
| 1 | K/kg | 0.215 3 |
| 2 | C/t | 0.202 6 |
| 3 | F/min | 0.193 5 |
| 4 | G/min | 0.186 2 |
| 5 | I/m3 | 0.158 9 |
| 6 | A/℃ | 0.125 3 |
| 7 | J/kg | 0.118 2 |
| 8 | B×106 | 0.115 8 |
| 9 | L/kg | 0.108 7 |
| 10 | D×106 | 0.106 3 |
| 11 | E | 0.104 0 |
| 12 | H/℃ | 0.096 9 |
| 13 | M×106 | 0.080 4 |
Table 3 Score about out-of-bag data error for each
| 排序 | 特征变量 | 袋外数据误差 |
|---|---|---|
| 1 | K/kg | 0.215 3 |
| 2 | C/t | 0.202 6 |
| 3 | F/min | 0.193 5 |
| 4 | G/min | 0.186 2 |
| 5 | I/m3 | 0.158 9 |
| 6 | A/℃ | 0.125 3 |
| 7 | J/kg | 0.118 2 |
| 8 | B×106 | 0.115 8 |
| 9 | L/kg | 0.108 7 |
| 10 | D×106 | 0.106 3 |
| 11 | E | 0.104 0 |
| 12 | H/℃ | 0.096 9 |
| 13 | M×106 | 0.080 4 |
| 数据集 | 模型 | 超参数个数 | RMSE | MAE | HR(±5×10-6)/% | HR(±7×10-6)/% |
|---|---|---|---|---|---|---|
| X0 | XGBoost | 3 | 4.21 | 3.76 | 71.42 | 83.56 |
| 6 | 3.93 | 3.34 | 76.80 | 86.17 |
Table 4 XGBoost model prediction results with different hyperparameters
| 数据集 | 模型 | 超参数个数 | RMSE | MAE | HR(±5×10-6)/% | HR(±7×10-6)/% |
|---|---|---|---|---|---|---|
| X0 | XGBoost | 3 | 4.21 | 3.76 | 71.42 | 83.56 |
| 6 | 3.93 | 3.34 | 76.80 | 86.17 |
| 特征集 | RMSE | MAE | t/s | HR(±5×10-6)/% | HR(±7×10-6)/% |
|---|---|---|---|---|---|
| X1 | 4.02 | 3.25 | 361.77 | 77.98 | 90.75 |
| X2 | 4.05 | 3.38 | 352.08 | 76.42 | 89.08 |
| X3 | 4.26 | 3.66 | 358.42 | 74.07 | 90.64 |
Table 5 Prediction results of three feature sets under XGBoost model
| 特征集 | RMSE | MAE | t/s | HR(±5×10-6)/% | HR(±7×10-6)/% |
|---|---|---|---|---|---|
| X1 | 4.02 | 3.25 | 361.77 | 77.98 | 90.75 |
| X2 | 4.05 | 3.38 | 352.08 | 76.42 | 89.08 |
| X3 | 4.26 | 3.66 | 358.42 | 74.07 | 90.64 |
| 特征集 | 模型 | RMSE | MAE | t/s | HR(±5×10-6)/% | HR(±7×10-6)/% |
|---|---|---|---|---|---|---|
| X1 | PSO-XGBoost | 3.56 | 2.96 | 424.58 | 85.68 | 95.17 |
| X2 | 3.97 | 3.21 | 419.75 | 78.62 | 90.76 | |
| X3 | 3.71 | 3.18 | 418.84 | 80.85 | 93.39 | |
| X1 | WOA-XGBoost | 3.38 | 2.79 | 413.74 | 91.26 | 98.97 |
| X2 | 3.65 | 2.96 | 424.16 | 86.79 | 97.34 | |
| X3 | 3.53 | 2.87 | 419.72 | 88.76 | 98.11 |
Table 6 Prediction results of three feature sets under PSO-XGBoost and WOA-XGBoost models
| 特征集 | 模型 | RMSE | MAE | t/s | HR(±5×10-6)/% | HR(±7×10-6)/% |
|---|---|---|---|---|---|---|
| X1 | PSO-XGBoost | 3.56 | 2.96 | 424.58 | 85.68 | 95.17 |
| X2 | 3.97 | 3.21 | 419.75 | 78.62 | 90.76 | |
| X3 | 3.71 | 3.18 | 418.84 | 80.85 | 93.39 | |
| X1 | WOA-XGBoost | 3.38 | 2.79 | 413.74 | 91.26 | 98.97 |
| X2 | 3.65 | 2.96 | 424.16 | 86.79 | 97.34 | |
| X3 | 3.53 | 2.87 | 419.72 | 88.76 | 98.11 |
| [1] | 饶江平, 杨治争, 李光强, 等. IF钢RH精炼理论研究与工艺优化[J]. 炼钢, 2022, 38(5): 59-66. |
| Rao Jiang-ping, Yang Zhi-zheng, Li Guang-qiang, et al. Theoretical study and process optimization of RH refining for IF steel[J]. Steelmaking, 2022, 38(5): 59-66. | |
| [2] | Feng K, Xu A J, Wu P F, et al. Case-based reasoning model based on attribute weights optimized by genetic algorithm for predicting end temperature of molten steel in RH[J]. Journal of Iron and Steel Research International, 2019, 26(6): 585-592. |
| [3] | Lu W, Mao Z Z, Yuan P. Ladle furnace liquid steel temperature prediction model based on optimally pruned bagging[J]. Journal of Iron and Steel Research International, 2012, 19(12): 21-28. |
| [4] | Chen G J, Yang J, Li Y G, et al. Mathematical simulation of decarburization with CO2 injection during RH refining of ultra-low-carbon steel[J]. Metals and Materials International, 2025, 31: 167-181. |
| [5] | Li Y W, Liu B G, Peng J H, et al. Prediction model of microwave calcining of ammonium diuranate using incremental improved back-propagation neural network[J]. Acta Metallugica Sinica(English Letters), 2011, 24(1): 34-42. |
| [6] | Wang S F, Tang Y, Li X B, et al. Analyses and predictions of rock cuttabilities under different confining stresses and rock properties based on rock indentation tests by conical pick[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(6): 1766-1783. |
| [7] | Lee E H, Kim K, Kho S Y, et al. Estimating express train preference of urban railway passengers based on extreme gradient boosting (XGBoost) using smart card data[J]. Transportation Research Record, 2021, 2675: 64-76. |
| [8] | 刘志明, 战东平, 葛启桢, 等. 基于BP神经网络的电炉终点碳质量分数预报模型[J]. 工业加热, 2018, 47(4): 28-31. |
| Liu Zhi-ming, Zhan Dong-ping, Ge Qi-zhen, et al. Prediction model of mass fraction of endpoint carbon of electric furnace based on BP neural network[J]. Industrial Heating, 2018, 47(4): 28-31. | |
| [9] | 魏付豪, 刘建华, 张游游, 等. RH精炼终点预报模型[J]. 炼钢, 2016, 32(6): 38-44. |
| Wei Fu-hao, Liu Jian-hua, Zhang You-you, et al. The endpoint prediction model for RH refining[J]. Steelmaking, 2016, 32(6): 38-44. | |
| [10] | 杨业鹏, 岳峰, 马明胜. RH精炼炉脱碳模型研究[J]. 炼钢, 2020, 36(2): 10-16. |
| Yang Ye-peng, Yue Feng, Ma Ming-sheng. Study on decarburization model for RH refining furnace[J]. Steelmaking, 2020, 36(2): 10-16. | |
| [11] | Heo J, Kim T W, Jung S J, et al. Real-time prediction model of carbon content in RH process[J]. Applied Sciences, 2022, 12(21): 10753-10764. |
| [12] | 陈超, 农伟民, 王楠. 基于机器学习模型的Consteel电弧炉终点碳含量及温度预测[J]. 冶金自动化, 2023, 47(6): 37-44. |
| Chen Chao, Nong Wei-min, Wang Nan. Prediction on end-point carbon content and temperature of Consteel electric arc furnace based on machine learning model[J]. Metallurgical Industry Automation, 2023, 47(6): 37-44. | |
| [13] | Sun Y, Brown M B, Prapopoulou M, et al. The application of stochastic machine learning methods in the prediction of skin penetration[J]. Applied Soft Computing, 2011, 11(2): 2367-2375. |
| [14] | Achour A, Kammoun M A, Hajej Z. Towards optimizing multi-level selective maintenance via machine learning predictive models[J]. Applied Sciences, 2024, 14(1): 313-318. |
| [15] | Qu Z, Genton M G. Sparse functional boxplots for multivariate curves[J]. Journal of Computational and Graphical Statistics, 2022, 31(4): 976-989. |
| [16] | Er O, Külekci M K, Esme U, et al. Multi response optimization of friction stir spot welding process using Taguchi based grey relational analysis[J]. Cukurova University Journal of the Faculty of Engineering, 2021, 36(2): 421-432. |
| [17] | Aydin H, Bayram A, Esme U, et al. Application of grey relation analysis (GRA) and Taguchi method for the parametric optimization of friction stir welding (FSW) process[J]. Materials and Technology, 2010, 44(4): 205-211. |
| [18] | 柴宝堂, 雷洪, 徐猛, 等. 基于BP神经网络的RH精炼终点钢液温度预测[J]. 炼钢, 2023, 39(5): 33-40,47. |
| Chai Bao-tang, Lei Hong, Xu Meng, et al. Predicted temperature of molten steel at the end of RH refining on the base of BP neural network[J]. Steelmaking, 2023, 39(5): 33-40,47. | |
| [19] | Gaïffas S, Merad I, Yu Y Y. WildWood: a new random forest algorithm[J]. IEEE Transactions on Information Theory, 2023, 69(10): 6586-6604. |
| [20] | Tarchoune I, Djebba A, Merouani H F, et al. An improved random forest based on feature selection and feature weighting for case retrieval in CBR system application to medical data[J]. International Journal of Software Innovation, 2022, 10(1): 14-16. |
| [21] | Gewers F L, Ferreira G R, Arruda H F, et al. Principal component analysis: a natural approach to data exploration[J]. ACM Computing Surveys, 2021, 54(4): 1-34. |
| [22] | Izonin I, Tkachenko R, Shakhovska N, et al. A two-step data normalization approach for improving classification accuracy in the medical diagnosis domain[J]. Mathematics, 2022, 10(11): 1942-1947. |
| [23] | Li Z H, Qin L, Guo B S, et al. Characterization of the convoluted 3D intermetallic phases in a recycled Al alloy by synchrotron X-ray tomography and machine learning[J]. Acta Metallugica Sinica(English Letters), 2022, 35(1): 115-123. |
| [24] | Zheng Q, Feng B W, Liu Z Y, et al. Application of improved particle swarm optimisation algorithm in hull form optimisation[J]. Journal of Marine Science and Engineering, 2021, 9(9): 955-962. |
| [1] | Qi-long JIANG, Jian XU. Application of Improved PSO-PH-RRT* Algorithm in Intelligent Vehicle Path Planning [J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 12-19. |
| [2] | Zhi-guo LU, Xiao WANG. Mechanical Arm Trajectory Planning Based on B-Spline and Whale Optimization Algorithm [J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 683-689. |
| [3] | Jie LIU, Wen-jing TAN, Zhan-shan LI. Unsupervised Feature Selection Based on Sparse Self-representation with Manifold Regularization [J]. Journal of Northeastern University(Natural Science), 2024, 45(12): 1706-1716. |
| [4] | ZHAO Jun-tao, LUO Xiao-chuan, LIU Jun-mi. Application of Improved Whale Optimization Algorithm in Robot Path Planning [J]. Journal of Northeastern University(Natural Science), 2023, 44(8): 1065-1071. |
| [5] | ZHAO Hai, WANG Xiang, SHI Han, CHEN Jia-wei. A Transfer Learning Framework for EEG Emotion Recognition [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 913-921. |
| [6] | LI Zhan-shan, YANG Yun-kai,ZHANG Jia-chen. Filtering Feature Selection Algorithm Based on Entropy Weight Method [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 921-929. |
| [7] | DING Jing-guo, GUO Jin-hua. Prediction of Rough Rolling Width Based on Principal Component Analysis Collaborated with Random Forest Algorithm [J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1268-1275. |
| [8] | YANG Ai-ping, SONG Shang-yang, CHENG Si-meng. Lightweight Adaptive Feature Selection Network for Object Detection [J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1238-1245. |
| [9] | LI Zhan-shan, YAO Xin, LIU Zhao-geng, ZHANG Jia-chen. Feature Selection Algorithm Based on LightGBM [J]. Journal of Northeastern University(Natural Science), 2021, 42(12): 1688-1695. |
| [10] | CUI Xue-ting, LI Ying, FAN Jia-hao. Global Chaotic Bat Optimization Algorithm [J]. Journal of Northeastern University Natural Science, 2020, 41(4): 488-492. |
| [11] | LI Zhan-shan, LYU Ai-na. A Feature Selection Method Based on New Redundancy Measurement [J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1550-1556. |
| [12] | KONG Zhi, YANG Qing-feng, ZHAO Jie, XIONG Jun-jun. Adaptive Adjustment of Weights and Search Strategies-Based Whale Optimization Algorithm [J]. Journal of Northeastern University Natural Science, 2020, 41(1): 35-43. |
| [13] | LI Zhan-shan, LIU Zhao-geng, YU Yin, YAN Wen-hao. A Quantized Pheromone Ant Colony Optimization Algorithm for Feature Selection [J]. Journal of Northeastern University Natural Science, 2020, 41(1): 17-22. |
| [14] | QU Xing-tian, ZHANG Kun, WANG Xue-xu, WANG Hong-yi. Hybrid Cycle Algorithm-based Intelligent Assembly Sequence Planning of Complex Assembly [J]. Journal of Northeastern University Natural Science, 2019, 40(12): 1767-1772. |
| [15] | JI Ying-jun, YONG Xiao-yue, LIU Ying-lin, LIU Shi-xin. Random Forest Based Quality Analysis and Prediction Method for Hot-Rolled Strip [J]. Journal of Northeastern University Natural Science, 2019, 40(1): 11-15. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||