
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (10): 44-50.DOI: 10.12068/j.issn.1005-3026.2025.20240079
• Information & Control • Previous Articles Next Articles
Hui ZOU, Li-huang SHE, Ye-han CHEN, Yi YUE
Received:2024-04-08
Online:2025-10-15
Published:2026-01-13
CLC Number:
Hui ZOU, Li-huang SHE, Ye-han CHEN, Yi YUE. 3D Gesture Estimation Algorithm Based on Geometric Attention Mechanism[J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 44-50.
| 方法 | 平均误差/mm | 方法 | 平均误差/mm | 方法 | 平均误差/mm |
|---|---|---|---|---|---|
| NYU | ICVL | MSRA | |||
| 3DCNN[ | 14.1 | DeepMode1[ | 11.6 | Cascade | 15.2 |
| Pose-REN | 11.8 | Cascade | 9.9 | Occlusion[ | 12.8 |
| DeepPrior++ | 12.2 | CrossingNets[ | 10.2 | CrossingNets | 12.2 |
| REN-9×6×6[ | 12.7 | DeepPrior++ | 8.1 | REN-9×6×6 | 9.7 |
| Feedback[ | 16.0 | LRF | 12.6 | DeepPrior++ | 9.5 |
| Hand3D[ | 17.6 | Hand PointNet | 6.9 | Hand PointNet | 8.5 |
| 本文 | 12.0 | 本文 | 6.7 | 本文 | 8.1 |
Table 1 Comparison of mean error distance
| 方法 | 平均误差/mm | 方法 | 平均误差/mm | 方法 | 平均误差/mm |
|---|---|---|---|---|---|
| NYU | ICVL | MSRA | |||
| 3DCNN[ | 14.1 | DeepMode1[ | 11.6 | Cascade | 15.2 |
| Pose-REN | 11.8 | Cascade | 9.9 | Occlusion[ | 12.8 |
| DeepPrior++ | 12.2 | CrossingNets[ | 10.2 | CrossingNets | 12.2 |
| REN-9×6×6[ | 12.7 | DeepPrior++ | 8.1 | REN-9×6×6 | 9.7 |
| Feedback[ | 16.0 | LRF | 12.6 | DeepPrior++ | 9.5 |
| Hand3D[ | 17.6 | Hand PointNet | 6.9 | Hand PointNet | 8.5 |
| 本文 | 12.0 | 本文 | 6.7 | 本文 | 8.1 |
| 自身融合 | 锐变分量 | 柔变分量 | 误差/mm |
|---|---|---|---|
| √ | 8.6 | ||
| √ | 8.3 | ||
| √ | 8.4 | ||
| √ | √ | 8.1 |
Table 2 Complementary attention effect
| 自身融合 | 锐变分量 | 柔变分量 | 误差/mm |
|---|---|---|---|
| √ | 8.6 | ||
| √ | 8.3 | ||
| √ | 8.4 | ||
| √ | √ | 8.1 |
| [1] | Ahmet G, Neslihan K, Gerhard R, et al. Real-time hand gesture detection and classification using convolutional neural networks [C]// 2019 IEEE International Conference on Automatic Face and Gesture Recognition. Lille, 2019: 1-8. |
| [2] | Chen X H, Wang G J, Guo H K, et al. Pose guided structured region ensemble network for cascaded hand pose estimation [J]. Neurocomputing, 2020, 395: 138-149. |
| [3] | Moon G, Chang J Y, Lee K M, et al. V2V PoseNet: voxel-to-voxel prediction network for accurate 3D hand and human pose estimation from a single depth map [C]// IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 5079-5088. |
| [4] | Ge L H, Cai Y J, Weng J W, et al. Hand PointNet: 3D hand pose estimation using point set [C]// 2018 IEEE International Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 8417-8426. |
| [5] | Chen Y J, Tu Z G, Ge L H, et al. So-HandNet: self-organizing network for 3D hand pose estimation with semi-supervised learning [C]// 2019 International Conference on Computer Vision. Seoul, 2019: 6960-6969. |
| [6] | Qi C R, Yi L, Su H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [J]. Advances in Neural Information Processing Systems, 2017, 30(10): 5105-5114. |
| [7] | Xu M T, Zhang J H, Zhou Z P. Learning geometry-disent angled representation for complementary understanding of 3D object point cloud [C]// 2021 AAAI Conference on Artificial Intelligence. Vancouver, 2021, 35(4): 3056-3064. |
| [8] | Guo M H, Liu Z J. Point cloud transformer [J]. Computational Visual Media,2021, 7(2): 187-199. |
| [9] | Sun X, Wei Y C, Liang S, et al. Cascaded hand pose regression [C]// 2015 IEEE International Conference on Computer Vision and Pattern Recognition. Boston, 2015: 824-832. |
| [10] | Tompson J, Stein M, Lecun Y, et al. Real-time continuous pose recovery of human hands using convolutional networks [J]. ACM Transactions on Graphics, 2014, 33(5): 1-10. |
| [11] | Tang D H, Chang C J, Alykhan, et al. Latent regression forest: structured estimation of 3D articulated hand posture [C]// 2014 IEEE International Conference on Computer Vision and Pattern Recognition. Columbus, 2014: 3786-3793. |
| [12] | Markus O, Vincent L. Deepprior++: improving fast and accurate 3D hand pose estimation. [C]// 2017 IEEE International Conference on Computer Vision Workshop. Venice, 2017: 585-594. |
| [13] | Ge L H, Liang H, Yuan J S, et al. 3D convolutional neural networks for efficient and robust hand pose estimation from single depth images [C]// 2017 IEEE International Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 5679-5688. |
| [14] | Wang G J, Chen X H, Guo H K, et al. Region ensemble network: towards good practices for deep 3D hand pose estimation [J]. Journal of Visual Communication and Image Representation,2018, 55(8): 404-414. |
| [15] | Markus O, Wohlhart P, Lepetit V. Training a feedback loop for hand pose estimation [C]// 2015 IEEE/CVF International Conference on Computer Vision. Santiago, 2015: 3316-3324. |
| [16] | Deng X M, Yang S, Zhang Y D, et al. Hand3D: hand pose estimation using 3D neural network [C]// 2017 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 549-557. |
| [17] | Zhou X Y, Wan Q F, Zhang W, et al. Model-based deep hand pose estimation [C]// 2016 International Joint Conference on Artificial Intelligence. New York, 2016: 2421-2427. |
| [18] | Wan C D, Probst T, Luc V G, et al. Crossing nets: combining GANs and VAEs with a shared latent space for hand pose estimation [C]// 2017 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Honolulu, 2017: 1196-1205. |
| [19] | Madadi M, Escalera S, Carruesco A, et al. Occlusion aware hand pose recovery from ` sequences of depth images [C]// 2017 International Conference on Automatic Face & Gesture Recognition. Washington DC, 2017: 230-237. |
| [1] | Ying WEI, Jia-peng ZHANG, Jia-qi CUI, Tong HUANG. Two-Stage SiamCAR Tracking Algorithm Combining Motion Information and Dual-attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2025, 46(9): 9-16. |
| [2] | Hui LI, Xiao-fei HAN, Wan-cheng ZHU, Jia-shi MAO. Mine Slope Displacement Prediction Based on ICEEMDAN and Attention-LSTM [J]. Journal of Northeastern University(Natural Science), 2025, 46(7): 163-170. |
| [3] | Hai-bin WU, Wu-kai HUANG. Feature Extraction and Motion Tracking of Planar Fillet Weld Seams Based on 3D Point Cloud [J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 93-101. |
| [4] | Zhen-long HOU, Jin-rong SHEN, Ji-kang WEI, Wen-tian ZHAO. Intelligent Identification of Minerals Polished Section Under Microscope Based on SSD and Image Transformation [J]. Journal of Northeastern University(Natural Science), 2025, 46(6): 131-137. |
| [5] | Bin YU, Hong-chun SUN, Da-yong YE. Intelligent Fault Diagnosis Under Variable Loads Based on the Embedded Gear Fault Mechanism [J]. Journal of Northeastern University(Natural Science), 2025, 46(4): 61-70. |
| [6] | Xiao-peng SHA, De-han XIE, Zhou-peng GUO, Kai SUN. LIDD-Net: Lightweight Industrial Product Defect Detection Method Based on Deep Learning [J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 18-26. |
| [7] | Zhen-zhen LYU, Li-jin FANG, Qian-kun ZHAO, Ying-cai WAN. Defect Detection on PCB Based on Improved YOLOv8 [J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 1-9. |
| [8] | Hai-yan LI, Ren-chao QIAO, Hai-jiang LI, Quan CHEN. CNN-Transformer Dehazing Algorithm Based on Global Residual Attention and Gated Feature Fusion [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 26-34. |
| [9] | Ji-hong LIU, Xi-xiong HUANG. Face Inpainting Model Based on Denoising Diffusion Probability Models [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1227-1234. |
| [10] | Yan LIU, Qi-jie BU, Hong-chen ZHAO, Xin GUO. Operating Performance Assessment of Flotation Process Based on Multi-source Heterogeneous Information [J]. Journal of Northeastern University(Natural Science), 2024, 45(9): 1217-1226. |
| [11] | An-lin TIAN, Wei-min LEI, Peng ZHANG, Wei ZHANG. A Multi-scale Edge Detection Method Based on Encoder-Decoder [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 936-943. |
| [12] | Hong-li LI, Hao-yu LIU, Rong-hua ZHANG, Yi CHENG. Emotional Classification Based on Multidimensional Feature Matrix and Improved Dense Connection Network [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 928-935. |
| [13] | Ji-hong LIU, Lü-heng ZHANG, Hai-xu YANG. A Saturation Artifact Inpainting Algorithm for Cell Fluorescence Microscopic Images [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 921-927. |
| [14] | Wei-wei LIU, Jia-he QIU, Guang-da HU, Ze-yuan LIU. Surface Damage Detection Method for Retired Shaft Parts Based on Improved YOLOv5 [J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 1002-1010. |
| [15] | Yuan MA, Li-huang SHE, Jia-wei LI, Xi-rong BAO. Adaptive Graph Convolutional 3D Point Cloud Recognition Algorithm Based on Attention Mechanism [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 786-792. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||