CHEN Qi-yuan, ZHOU Xiao-guang, LIU Zhen-yu, WU Si-wei. Microstructure and Properties of Ti Microalloyed Automobile Frame Steel 510L[J]. Journal of Northeastern University Natural Science, 2018, 39(3): 339-344.
[1]王欣,康永林,于浩,等.FTSR工艺生产低C-Mn钢510L汽车大梁板的组织性能分析[J].汽车工艺与材料,2006(2):6-8.(Wang Xin,Kang Yong-lin,Yu Hao,et al.Analysis on the microstructure and mechanical properties of low C-Mn 510L beam plate produced by FTSR technology[J].Automobile Technology & Material,2006(2):6-8.) [2]杨澄.汽车大梁板WL510钢的性能控制[J].金属热处理,2011,36(10):11-14.(Yang Cheng.Properties controlling of automobile beam steel WL510[J].Heat Treatment of Metals,2011,36(10):11-14.) [3]Medina S F,Chapa M,Valles P,et al.Influence of Ti and N contents on austenite grain control and precipitate size in structural steels[J].ISIJ International,1996,39(9):930-936. [4]张继魁,辛莹,张曼曼,等.汽车大梁用低合金高强度钢板的性能与发展[J].汽车工艺与材料,2004(6):42-46.(Zhan Ji-kui,Xin Ying,Zhang Man-man,et al.Property and development of high strength low alloy hot rolled steel sheet for truck frame use[J].Automobile Technology & Material,2004(6):42-46.) [5]Xie K Y,Zheng T,Cairney J M,et al.Strengthening from Nb-rich clusters in a Nb-microalloyed steel[J].Scripta Materialia,2012,66(9):710-713. [6]Kamibayashi K,Tanabe Y,Takemoto Y,et al.Influence of Ti and Nb on the strength-ductility-hole expansion ratio balance of hot-rolled low-carbon high-strength steel sheets[J].ISIJ International,2012,52(1):151-157. [7]Soto R,Saikaly W,Bano X,et al.Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties[J].Acta Materialia,1999,47(12):3475-3481. [8]Chsapa M,Medina S F,Lopez V,et al.Influence of Al and Nb on optimum Ti/N ratio in controlling austenite grain growth at reheating temperatures[J].ISIJ International,2002,42(11):1288-1296. [9]Shi Z R,Chai X Y,Chai F,et al.The mechanism of intragranular ferrite formed on Ti-rich(Ti,V)(C,N)precipitates in the coarse heat affected zone of a V-N-Ti microalloyed steel[J].Materials Letters,2016,175(14):266-270. [10]Xu Y,Zhang W N,Sun M X,et al.The blocking effects of interphase precipitation on dislocations’ movement in Nb/Ti micro-alloyed steels[J].Materials Letters,2015,139(15):177-181. [11]Mao X P,Huo X D,Sun X J,et al.Strengthening mechanisms of a new 700MPa hot rolled Ti-microalloyed steel produced by compact strip production[J].Journal of Materials Processing Technology,2010,210(12):1660-1666. [12]Eghbali B.Microstructural development in a low carbon Ti-microalloyed steel during deformation within the ferrite region[J].Materials Science and Engineering A,2008,480(1):84-88.(上接第328页) [4]Jiang Q,Wang G,Jin S,et al.Predicting human microRNA-disease associations based on support vector machine[J].International Journal of Data Mining and Bioinformatics,2013,8(3):282-293. [5]Zou Q,Li J J,Hong Q Q,et al.Prediction of MicroRNA-disease associations based on social network analysis methods[J].BioMed Research International,2015,2015:810514.doi:10.1155/2015/810514. [6]Chen X,Yan G Y.Semi-supervised learning for potential human microRNA-disease associations inference[J].Scientific Report,2014,4:5501.doi:10.1038/srep05501. [7]Chen X,Yan C G,Zhang X T,et al.RBMMMDA:predicting multiple types of disease-microRNA associations[J].Scientific Report,2015,5:13877.doi:10.1038/srep13877. [8]Chen H L,Zhang Z P.Similarity-based methods for potential human microRNA-disease association prediction [J].BMC Medical Genomics,2013,6(12):1-9. [9]Sun D D,Li A,Feng H Q,et al.NTSMDA:prediction of miRNA-disease associations by integrating network topological similarity [J].Molecular BioSystems,2016,12(7):2224-2232. [10]Navlakha S,Kingsford C.The power of protein interaction networks for associating genes with diseases[J].Bioinformatics,2010,26(8):1057-1063. [11]孟宪伟.MicroRNA与人类疾病关联的预测方法研究与实现[D].哈尔滨:哈尔滨工业大学,2012.(Meng Xian-wei.Research and implementation of predicting human disease-related microRNAs[D].Harbin:Harbin Institute of Technology,2012.) [12]Chen X,Liu M X,Yan G Y.RWRMDA:predicting novel human microRNA-disease associations[J].Molecular BioSystmes,2012,8(10):2792-2798. [13]Xuan P,Han K,Guo Y D,et al.Prediction of potential disease-associated microRNAs based on random walk[J].Bioinformatics,2015,31(11):1805-1815. [14]van Driel M A,Bruggeman J,Vriend G,et al.A text-mining analysis of the human phenome[J].European Journal of Human Genetics,2006,14(5):535-542. [15]Khler S,Schulz H,Krawitz P,et al.Clinical diagnostics in human genetics with semantic similarity searches in ontologies[J].The American Journal of Human Genetics,2009,85(4):457-464. [16]Li J H,Lin X Y,Teng Y Y,et al.A comprehensive evaluation of disease phenotype networks for gene prioritization[J].PLOS One,2016,11(7):e0159457.doi:10.1371/journal.pone.0159457. [17]Wang D,Wang J,Lu M,et al.Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases[J].Bioinformatics,2010,26(13):1644-1650. [18]Vanunu O,Magger O,Ruppin E,et al.Associating genes and protein complexes with disease via network propagation[J].PLOS Computational Biology,2010,6(1):e1000641.