ZHOU Bing-hai, GU Jia-ying. An Energy-Saving Scheduling Algorithm for Non-identical Parallel Machines with Multi-resource Contraints[J]. Journal of Northeastern University Natural Science, 2019, 40(3): 403-408.
[1]Gahm C,Decz F,Dirr M,et al.Energy-efficient scheduling in manufacturing companies:a review and research framework [J].European Journal of Operational Research,2016,248(3):744-757. [2]Zhang R,Chiong R.Solving the energy-efficient job shop scheduling problem:a multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption [J].Journal of Cleaner Production,2016,112:3361-3375. [3]Zeidi J R,Mohmmadhosseini S.Scheduling unrelated parallel machines with sequence-dependent setup times [J].The International Journal of Advanced Manufacturing Technology,2015,81(9/10/11/12):1487-1496. [4]Obeid A,Dauzere-peres S,Yugma C.Scheduling job families on non-identical parallel machines with time constraints [J].Annals of Operations Research,2014,213(1):221-234. [5]Jia J,Mason S J.Semiconductor manufacturing scheduling of jobs containing multiple orders on identical parallel machines [J].International Journal of Production Research,2009,47(10):2565-2585. [6]Zhou B H,Hu L M,Zhong Z Y.A hybrid differential evolution algorithm with estimation of distribution algorithm for reentrant hybrid flow shop scheduling problem [J].Neural Computing and Applications,2018,30(1):193-209. [7]Cakici E,Mason S J.Parallel machine scheduling subject to auxiliary resource constraints [J].Production Planning and Control,2007,18(3):217-225. [8]Bitar A,Dauzere-peres S,Yugma C,et al.A memetic algorithm to solve an unrelated parallel scheduling problem with auxiliary resources in semiconductor manufacturing [J].Journal of Scheduling,2016,19(4):367-376. [9]Hu Z H.A multiobjective immune algorithm based on a multiple-affinity model [J].European Journal of Operational Research,2010,202(1):60-72. [10]Deb K,Prata A,Agarwal S,et al.A fast and elitist multi-objective genetic algorithm:NSGA-II [J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.(上接第402页)4结论1) 利用模糊控制来改变LQR控制的增益有较好的效果,将模糊控制和LQR控制相结合形成的变增益LQR控制对于改善车辆的平顺性有较好的作用.2) 对于车辆主动悬架研究而言,同时考虑座椅悬架和车身悬架的垂向加速度来评价车辆的平顺性,比以往应用车身悬架的垂直加速度评价车辆的平顺性更具有精确性和有效性.3) 定增益LQR控制悬架具有局限性,对座椅加速度控制良好.但牺牲了底盘的控制效果,使得底盘加速度峰值比被动悬架的大.模糊控制和LQR控制相结合形成的变增益LQR控制的增益矩阵K是变化的,能根据实时情况变化,从而使得座椅控制效果良好,弥补定增益控制的缺陷.