1. Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an 710064, China; 2. Post-Doctoral Research Center, Wuhu HIT Robot Technology Research Institute Co., Ltd., Wuhu 241007, China; 3. Wuhu Robot Technology Research Institute, Harbin Institute of Technology, Wuhu 241007, China; 4. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.
[1]Zhu W L,Beaucamp A.Compliant grinding and polishing:a review[J].International Journal of Machine Tools and Manufacture,2020,158:103634. [2]黄智,周涛,吴湘,等.机器人气囊抛光SiC光学元件加工特性研究[J].西安交通大学学报,2020,54(12):22-29.(Huang Zhi,Zhou Tao,Wu Xiang,et al.SiC optical element processing under robot bonnet polishing[J].Journal of Xi’an Jiaotong University,2020,54(12):22-29.) [3]林文强,焦明裕,赵西松,等.可调节气囊提高航空薄壁件加工精度的研究[J].东北大学学报(自然科学版),2017,38(3):390-394.(Lin Wen-qiang,Jiao Ming-yu,Zhao Xi-song,et al.Study on improving the machining accuracy of aviatic thin-walled parts with the adjustable airbag[J].Journal of Northeastern University(Natural Science),2017,38(3):390-394.) [4]Chen F,Zhao H,Li D,et al.Contact force control and vibration suppression in robotic polishing with a smart end effector[J].Robotics and Computer-Integrated Manufacturing,2019,57:391-403. [5]Dai J,Chen C Y,Zhu R,et al.Suppress vibration on robotic polishing with impedance matching[J].Actuators,2021,10(3):59-78. [6]Mohammad A E K,Hong J,Wang D.Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach[J].Robotics and Computer-Integrated Manufacturing,2018,49:54-65. [7]Ma Z,Poo A N,Ang M H,et al.Design and control of an end-effector for industrial finishing applications[J].Robotics and Computer-Integrated Manufacturing,2018,53:240-253. [8]Ding B,Zhao J,Li Y.Design of a spatial constant-force end-effector for polishing/deburring operations[J].The International Journal of Advanced Manufacturing Technology,2021,116(11):3507-3515. [9]Jin M,Ji S,Pan Y,et al.Effect of downward depth and inflation pressure on contact force of gasbag polishing[J].Precision Engineering,2017,47:81-89. [10]Mohammad A E K,Hong J,Wang D,et al.Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications[J].Robotics and Computer-Integrated Manufacturing,2019,55:65-75. [11]Tommasino D,Bottin M,Cipriani G,et al.Development and validation of an end-effector for mitigation of collisions[J].Journal of Mechanical Design,2022,144(4):043301 [12]史家顺,董金龙,刘聪,等.随五轴加工轨迹变抛光力的控制策略与方法[J].东北大学学报(自然科学版),2020,41(1):89-94.(Shi Jia-sun,Dong Jin-long,Liu Cong,et al.Control strategy and method for variable polishing force adapting to the 5-axis machining trajectory[J].Journal of Northeastern University (Natural Science),2020,41(1):89-94.) [13]许家忠,郑学海,周洵.复合材料打磨机器人的主动柔顺控制[J].电机与控制学报,2019,23(12):151-158.(Xu Jia-zhong,Zheng Xue-hai,Zhou Xun.Active and compliant control of the composite polishing robot[J].Electric Machines and Control,2019,23(12):151-158.) [14]张雷,周宛松,卢磊,等.抛光力实时控制策略研究[J].东北大学学报(自然科学版),2015,36(6):853-857.(Zhang Lei,Zhou Wan-song,Lu Lei,et al.Research on real-time control strategies of polishing force[J].Journal of Northeastern University(Natural Science),2015,36(6):853-857.) [15]王磊,柳洪义,王菲.在未知环境下基于模糊预测的力/位混合控制方法[J].东北大学学报(自然科学版),2005,26(12):1181-1184.(Wang Lei,Liu Hong-yi,Wang Fei.Position/force control based on fuzzy prediction in unknown environment[J].Journal of Northeastern University(Natural Science),2005,26(12):1181-1184.) [16]Xu X H,Zhu D H,Zhang H Y,et al.Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades[J].Chinese Journal of Aeronautics,2019,32(10):2368-2382. [17]Mohsin I,He K,Li Z,et al.Path planning under force control in robotic polishing of the complex curved surfaces[J].Applied Sciences,2019,9(24):5489-5511. [18]Gracia L,Solanes J E,Muoz-Benavent P,et al.Adaptive sliding mode control for robotic surface treatment using force feedback[J].Mechatronics,2018,52:102-118. [19]Kakinuma Y,Ogawa S,Koto K.Robot polishing control with an active end effector based on macro-micro mechanism and the extended Preston’s law[J].CIRP Annals,2022,71(1):341-344. [20]Lakshminarayanan S,Kana S,Mohan D M,et al.An adaptive framework for robotic polishing based on impedance control[J].The International Journal of Advanced Manufacturing Technology,2020,112(1/2):401-417. [21]Kana S,Lakshminarayanan S,Mohan D M,et al.Impedance controlled human–robot collaborative tooling for edge chamfering and polishing applications[J].Robotics and Computer-Integrated Manufacturing,2021,72:102199. [22]张铁,吴圣和,蔡超.基于浮动平台的机器人恒力控制研磨方法[J].上海交通大学学报,2020,54(5):515-523.(Zhang Tie,Wu Sheng-he,Cai Chao.Constant force control method for robotic disk grinding based on floating platform[J].Journal of Shanghai Jiao Tong University,2020,54(5):515-523.) [23]韩京清.自抗扰控制技术:估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.