Parameter Identification of Multivariate Hammerstein-Wiener Model
BAI Jing1, 2, MAO Zhi-zhong1, PU Tie-cheng2
1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. College of Electrical and Information Engineering, Beihua University, Jilin 132021, China.
BAI Jing , MAO Zhi-zhong, PU Tie-cheng. Parameter Identification of Multivariate Hammerstein-Wiener Model[J]. Journal of Northeastern University Natural Science, 2018, 39(1): 6-10.
[1]Giri F,Bai E W.Block-oriented nonlinear system identification [M].Berlin:Springer-Verlag,2010:1-50. [2]Bai E W.An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems [C]// American Control Conference.Philadelphia,1998:27-34. [3]Bai E W.A blind approach to the Hammerstein-Wiener model identification [J].Automatic,2002,38(6):967-979. [4]Zhu Y.Estimation of an N-L-N Hammerstein-Wiener model [J].Automatic,2002,38(9):1607-1614. [5]李妍,毛志忠,王琰,等.基于偏差补偿递推最小二乘的Hammerstein-Wiener模型辨识 [J].自动化学报,2010,36(1):163-168.(Li Yan,Mao Zhi-zhong,Wang Yan,et al.Identification of Hammerstein-Wiener models based on bias compensation recursive least squares [J].Acta Automatic Sinica,2010,36(1):163-168.) [6]Yu F,Mao Z Z,Jia M X,et al.Recursive parameter identification of Hammerstein-Wiener systems with measurement noise [J].Signal Processing,2014,105(12):137-147. [7]Salimifard M,Jafari M,Dehghani M.Identification of nonlinear MIMO block-oriented systems with moving average noises using gradient based and least squares based iterative algorithms [J].Neurocomputing, 2012,94(3):22-31. [8]Golub G,Pereyra V.Separable nonlinear least squares:the variable projection method and its applications [J].Inverse Problems,2003,19(2):R1-R26. [9]O’Leary D P,Rust B W.Variable projection for nonlinear least squares problems [J].Computational Optimization & Applications,2013,54(3):579-593. [10]Bates D M,Watts D G.A generalized Gauss-Newton procedure for multiresponse parameter estimation [J].SIAM Journal on Scientific & Statistical Computing,1987,8(1):49-55.