Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (5): 697-706.DOI: 10.12068/j.issn.1005-3026.2024.05.012
• Mechanical Engineering • Previous Articles
Ling-xuan LI1,2, Zhen-wei MA1,2, Ze-jun YU1,2, Zhuang XING1,2
Received:
2023-01-11
Online:
2024-05-15
Published:
2024-07-31
CLC Number:
Ling-xuan LI, Zhen-wei MA, Ze-jun YU, Zhuang XING. Method for Bearing Fault Quantitative Diagnosis Based on MTF and Improved Residual Network[J]. Journal of Northeastern University(Natural Science), 2024, 45(5): 697-706.
模块 | ResNeXt-50(32×4d) | 输出 |
---|---|---|
conv1 | 112 | |
conv2 | 56 | |
conv3 | 28 | |
conv4 | 14 | |
conv5 | 7 | |
分类器 | 全局平均池化层,9维全连接层,Softmax | 1 |
Table 1 ResNeXt network structure
模块 | ResNeXt-50(32×4d) | 输出 |
---|---|---|
conv1 | 112 | |
conv2 | 56 | |
conv3 | 28 | |
conv4 | 14 | |
conv5 | 7 | |
分类器 | 全局平均池化层,9维全连接层,Softmax | 1 |
电动机负载/kW | 电动机转速/(r·min-1) |
---|---|
0.735 | 1 772 |
1.470 | 1 750 |
2.206 | 1 730 |
Table 2 Three working conditions corresponding
电动机负载/kW | 电动机转速/(r·min-1) |
---|---|
0.735 | 1 772 |
1.470 | 1 750 |
2.206 | 1 730 |
状态 | 故障程度/mm | 训练集 | 验证集 | 类别标签 |
---|---|---|---|---|
正常 | — | 400 | 50 | 0 |
滚动体 | 0.177 8 | 400 | 50 | 1 |
0.355 6 | 400 | 50 | 2 | |
0.533 4 | 400 | 50 | 3 | |
内圈 | 0.177 8 | 400 | 50 | 4 |
0.355 6 | 400 | 50 | 5 | |
0.533 4 | 400 | 50 | 6 | |
外圈 | 0.177 8 | 400 | 50 | 7 |
0.355 6 | 400 | 50 | 8 |
Table 3 Division of bearing fault data set
状态 | 故障程度/mm | 训练集 | 验证集 | 类别标签 |
---|---|---|---|---|
正常 | — | 400 | 50 | 0 |
滚动体 | 0.177 8 | 400 | 50 | 1 |
0.355 6 | 400 | 50 | 2 | |
0.533 4 | 400 | 50 | 3 | |
内圈 | 0.177 8 | 400 | 50 | 4 |
0.355 6 | 400 | 50 | 5 | |
0.533 4 | 400 | 50 | 6 | |
外圈 | 0.177 8 | 400 | 50 | 7 |
0.355 6 | 400 | 50 | 8 |
1 | Cocconcelli M, Zimroz R, Rubini R,et al.STFT based approach for ball bearing fault detection in a varying speed motor[C]//2nd International Conference on Condition Monitoring of Machinery in Non‑stationary Operations.Hammamet:Springer,2012:41-50. |
2 | Sun W, Yang G A, Chen Q,et al.Fault diagnosis of rolling bearing based on wavelet transform and envelope spectrum correlation[J].Journal of Vibration and Control,2013,19(6):924-941. |
3 | Huang N E, Shen Z, Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non‐stationary time series analysis [J].Proceedings of the Royal Society of London.Series A:Mathematical,Physical and Engineering Sciences,1998,454(1971):903-995. |
4 | Yu D J, Cheng J S, Yang Y.Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings[J].Mechanical Systems and Signal Processing,2005,19(2):259-270. |
5 | 甄冬,田少宁,郭俊超,等.改进型EEMD和MSB解调方法及其在轴承故障特征提取中的应用[J].振动工程学报,2023,36(5):1447-1456. |
Zhen Dong, Tian Shao‐ning, Guo Jun‐chao,et al.An improved decomposition method using EEMD and MSB and its application in rolling bearing fault feature extraction[J].Journal of Vibration Engineering,2023,36(5):1447-1456. | |
6 | Wu Z H, Huang N E.Ensemble empirical mode decomposition:a noise‐assisted data analysis method[J].Advances in Adaptive Data Analysis,2009,1(1):1-41. |
7 | 崔玲丽,刘银行,王鑫.基于改进奇异值分解的滚动轴承微弱故障特征提取方法[J].机械工程学报,2022,58(17):156-169. |
Cui Ling‐li, Liu Yin‐hang, Wang Xin.Feature extraction of weak fault for rolling bearing based on improved singular value decomposition[J].Journal of Mechanical Engineering,2022,58(17):156-169. | |
8 | Gu R, Chen J, Hong R J,et al.Incipient fault diagnosis of rolling bearings based on adaptive variational mode decomposition and Teager energy operator[J].Measurement,2020,149:106941. |
9 | Shenfield A, Howarth M.A novel deep learning model for the detection and identification of rolling element‐bearing fault[J].Sensors,2020,20(18):5112. |
10 | Fu W L, Zhou J Z, Zhang Y C.Fault diagnosis for rolling element bearings with VMD time‑frequency analysis and SVM[C]//2015 Fifth International Conference on Instrumentation and Measurement,Computer,Communication and Control (IMCCC).Qinhuangdao,2015:69-72. |
11 | 路敦利,宁芊,杨晓敏.KNN-朴素贝叶斯算法的滚动轴承故障诊断[J].计算机测量与控制,2018,26(6):21-23,27. |
Lu Dun‐li, Ning Qian, Yang Xiao‐min.Fault diagnosis of rolling bearing based on KNN‐naive Bayesian algorithm[J].Computer Measurement and Control,2018,26(6):21-23,27. | |
12 | Eren L, Ince T, Kiranyaz S.A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier[J].Journal of Signal Processing Systems,2019,91(2):179-189. |
13 | Liu C Y, Gryllias K.Simulation‐driven domain adaptation for rolling element bearing fault diagnosis[J].IEEE Transactions on Industrial Informatics,2022,18(9):5760-5770. |
14 | 王太勇,王廷虎,王鹏,等.基于注意力机制BiLSTM的设备智能故障诊断方法[J].天津大学学报(自然科学与工程技术版),2020,53(6):601-608. |
Wang Tai‐yong, Wang Ting‐hu, Wang Peng,et al.An intelligent fault diagnosis method based on attention‐based bidirectional LSTM network[J].Journal of Tianjin University(Science and Technology),2020,53(6):601-608 | |
15 | 张伟.基于卷积神经网络的轴承故障诊断算法研究[D].哈尔滨:哈尔滨工业大学,2017. |
Zhang Wei.Study on bearing fault diagnosis algorithm based on convolutional neural network[D].Harbin:Harbin Institute of Technology,2017. | |
16 | Wang Z G, Oates T.Encoding time series as images for visual inspection and classification using tiled convolutional neural networks[C]//Workshops at the Twenty‐Ninth AAAI Conference on Artificial Intelligence.Austin,2015:275970614. |
17 | Xie S N, Girshick R, Dollár P,et al.Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE,2017:5987-5995. |
18 | Zhang H, Wu C R, Zhang Z Y,et al.ResNeSt:split‐attention networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop(CVPR).New Orleans:IEEE,2022:2735-2745. |
19 | Yosinski J, Clune J, Bengio Y,et al.How transferable are features in deep neural networks[C]//28th Conference on Neural Information Processing Systems (NIPS).Montreal,2014:8-13. |
20 | Case Western Reserve University Bearing Data Center.Data file[EB/OL].(2018-06-10)[2021-03-10].. |
[1] | ZHAO Hai, WANG Xiang, SHI Han, CHEN Jia-wei. A Transfer Learning Framework for EEG Emotion Recognition [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 913-921. |
[2] | ZHAO Hai, CHEN Jia-wei, SHI Han, WANG Xiang. A Transfer Learning Algorithm Applied to Human Activity Recognition [J]. Journal of Northeastern University(Natural Science), 2022, 43(6): 776-782. |
[3] | HOU Dong-xiao, MU Jin-tao, FANG Cheng, SHI Pei-ming. Fault Diagnosis of Variable Speed Bearings Based on GADF and ResNet34 Introduced Transfer Learning [J]. Journal of Northeastern University(Natural Science), 2022, 43(3): 383-389. |
[4] | WANG Xin-gang, HAN Kai-zhong, WANG Chao, LI Lin. Bearing Remaining Useful Life Prediction Method Based on Transfer Learning [J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 665-672. |
[5] | WANG Shu, GUAN Zhan-xu, WANG Jing, SUN Xiao-hui. Bayesian Network Parameter Learning Method Based on Transfer Learning [J]. Journal of Northeastern University(Natural Science), 2021, 42(4): 509-515. |
[6] | FANG Liang, ZHOU Yun, TANG Zhi-quan. Image Classification of Corroded Steel Reinforcement Based on Optimized Residual Network [J]. Journal of Northeastern University(Natural Science), 2021, 42(11): 1625-1633. |
[7] | CHANG Yu-qing, ZHAO Wei-wei, LIU Le-yuan, KANG Xiao-yun. Modeling of Coal Mill Process Monitoring Based on Instance-based Transfer Learning [J]. Journal of Northeastern University(Natural Science), 2021, 42(10): 1369-1375. |
[8] | WANG Xin, WANG Cui-rong, WANG Cong, YUAN Ying. Dual-channel Multi-perception Convolutional Network for Image Super-Resolution [J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1564-1570. |
[9] | XU Li-sheng, ZHANG Wen-xu, PANG Yu-xuan, WU Cheng-yang. Driver Drowsiness Detection Algorithm Using Short-Time ECG Signals [J]. Journal of Northeastern University Natural Science, 2019, 40(7): 937-941. |
[10] | QI Lin, LYU Xu-yang, YANG Ben-qiang, XU Li-sheng. Segmentation of Left Ventricle Endocardium Based on Transfer Learning of Fully Convolutional Networks [J]. Journal of Northeastern University Natural Science, 2018, 39(11): 1577-1582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||