WANG Xin, WANG Cui-rong, WANG Cong, YUAN Ying. Dual-channel Multi-perception Convolutional Network for Image Super-Resolution[J]. Journal of Northeastern University Natural Science, 2020, 41(11): 1564-1570.
[1]Yang W M,Zhang X C,Tian Y P,et al.Deep learning for single image super-resolution:a brief review[J].IEEE Transactions on Multimedia,2019,21(12):3106-3121. [2]Dong C,Loy C C,He K,et al. Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision(ECCV). Berlin:Springer-Verlag,2014:184-199. [3]Kim J,Lee J K,Lee M K. Accurate image super-resolution using very deep convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE,2016:1646-1654. [4]He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE,2016:770-778. [5]Lim B,Son S,Kim H,et al.Enhanced deep residual networks for single image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Piscataway:IEEE,2017:1132-1140. [6]Zhang Y,Tian Y,Kong Y,et al.Residual dense network for image super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2018:2472-2481. [7]Tong T,Li G,Liu X,et al.Image super-resolution using dense skip connections[C]//International Conference on Computer Vision (ICCV).Piscataway:IEEE,2017:4809-4817. [8]Kim J,Lee J K,Lee K M,et al.Deeply-recursive convolutional network for image super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway:IEEE,2016:1637-1645.