
Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (11): 19-29.DOI: 10.12068/j.issn.1005-3026.2025.20249020
• Information & Control • Previous Articles Next Articles
Bo HU1, Hua-de XIONG2, Yao LIU3, Yong-jun ZHANG1(
)
Received:2024-04-10
Online:2025-11-15
Published:2026-02-07
Contact:
Yong-jun ZHANG
CLC Number:
Bo HU, Hua-de XIONG, Yao LIU, Yong-jun ZHANG. Foreign Object Detection Method for Dehydrated Vegetables Based on Improved YOLOv8[J]. Journal of Northeastern University(Natural Science), 2025, 46(11): 19-29.
| 异物类别 | 训练集 | 验证集 | 测试集 | 总计 |
|---|---|---|---|---|
| 彩条 | 1 481 | 186 | 186 | 1 853 |
| 头发 | 1 444 | 181 | 181 | 1 806 |
| 杂草 | 1 680 | 210 | 210 | 2 100 |
| 塑料片 | 1 040 | 130 | 130 | 1 300 |
| 带泥蔬菜 | 401 | 50 | 50 | 501 |
| 棉线 | 1 441 | 180 | 180 | 1 801 |
| 总计 | 7 487 | 937 | 937 | 9 361 |
Table 1 Foreign object dataset of vegetables
| 异物类别 | 训练集 | 验证集 | 测试集 | 总计 |
|---|---|---|---|---|
| 彩条 | 1 481 | 186 | 186 | 1 853 |
| 头发 | 1 444 | 181 | 181 | 1 806 |
| 杂草 | 1 680 | 210 | 210 | 2 100 |
| 塑料片 | 1 040 | 130 | 130 | 1 300 |
| 带泥蔬菜 | 401 | 50 | 50 | 501 |
| 棉线 | 1 441 | 180 | 180 | 1 801 |
| 总计 | 7 487 | 937 | 937 | 9 361 |
| 模型参数 | YOLOv3 | YOLOv5s | YOLOv8n | YOLOv8n-BCS |
|---|---|---|---|---|
| P/% | 93.1 | 96.0 | 96.1 | 96.8 |
| R/% | 90.7 | 93.9 | 94.2 | 94.7 |
| F1/% | 91.9 | 94.9 | 95.1 | 95.7 |
| mAP/% | 92.3 | 96.3 | 96.5 | 97.1 |
| FPS/(f·s-1) | 143.483 | 224.116 | 198.847 | 231.476 |
| 模型大小/MB | 235 | 18.6 | 6.2 | 6.1 |
Table 2 Performance comparison of different models
| 模型参数 | YOLOv3 | YOLOv5s | YOLOv8n | YOLOv8n-BCS |
|---|---|---|---|---|
| P/% | 93.1 | 96.0 | 96.1 | 96.8 |
| R/% | 90.7 | 93.9 | 94.2 | 94.7 |
| F1/% | 91.9 | 94.9 | 95.1 | 95.7 |
| mAP/% | 92.3 | 96.3 | 96.5 | 97.1 |
| FPS/(f·s-1) | 143.483 | 224.116 | 198.847 | 231.476 |
| 模型大小/MB | 235 | 18.6 | 6.2 | 6.1 |
| 序号 | 基础模型 | ShuffleNetV2+BoTNET | CARAFE | SimAM | SIoU | P/% | R/% | F1/% | mAP/% | FPS |
|---|---|---|---|---|---|---|---|---|---|---|
| f·s-1 | ||||||||||
| 模型1 | YOLOv8n | × | × | × | × | 96.1 | 94.2 | 95.1 | 96.5 | 198.847 |
| 模型2 | YOLOv8n | √ | × | × | √ | 96.3 | 94.2 | 95.2 | 96.7 | 210.452 |
| 模型3 | YOLOv8n | × | × | √ | √ | 96.1 | 94.0 | 95.0 | 96.5 | 202.926 |
| 模型4 | YOLOv8n | × | √ | × | √ | 96.1 | 94.3 | 95.2 | 96.4 | 205.424 |
| 模型5 | YOLOv8n | × | √ | √ | √ | 96.3 | 94.5 | 95.4 | 96.6 | 208.867 |
| 模型6 | YOLOv8n | √ | √ | × | √ | 96.7 | 93.5 | 95.1 | 96.6 | 205.723 |
| 模型7 | YOLOv8n | √ | × | √ | √ | 96.4 | 94.1 | 95.2 | 96.7 | 212.428 |
| 模型8 | YOLOv8n | √ | √ | √ | √ | 96.8 | 94.7 | 95.7 | 97.1 | 231.476 |
Table 3 Model’s ablation experiment
| 序号 | 基础模型 | ShuffleNetV2+BoTNET | CARAFE | SimAM | SIoU | P/% | R/% | F1/% | mAP/% | FPS |
|---|---|---|---|---|---|---|---|---|---|---|
| f·s-1 | ||||||||||
| 模型1 | YOLOv8n | × | × | × | × | 96.1 | 94.2 | 95.1 | 96.5 | 198.847 |
| 模型2 | YOLOv8n | √ | × | × | √ | 96.3 | 94.2 | 95.2 | 96.7 | 210.452 |
| 模型3 | YOLOv8n | × | × | √ | √ | 96.1 | 94.0 | 95.0 | 96.5 | 202.926 |
| 模型4 | YOLOv8n | × | √ | × | √ | 96.1 | 94.3 | 95.2 | 96.4 | 205.424 |
| 模型5 | YOLOv8n | × | √ | √ | √ | 96.3 | 94.5 | 95.4 | 96.6 | 208.867 |
| 模型6 | YOLOv8n | √ | √ | × | √ | 96.7 | 93.5 | 95.1 | 96.6 | 205.723 |
| 模型7 | YOLOv8n | √ | × | √ | √ | 96.4 | 94.1 | 95.2 | 96.7 | 212.428 |
| 模型8 | YOLOv8n | √ | √ | √ | √ | 96.8 | 94.7 | 95.7 | 97.1 | 231.476 |
| [1] | 单杨. 中国果蔬加工产业现状及发展战略思考[J]. 中国食品学报, 2010, 10(1): 1-9. |
| Shan Yang. Current situation and development strategic consideration of the fruits & vegetables processing industry in China[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(1): 1-9. | |
| [2] | 陈丰, 陈晓波, 王瑞鸿. 脱水蔬菜加工技术及其研究进展[J]. 农产品加工, 2013(9): 6-7. |
| Chen Feng, Chen Xiao-bo, Wang Rui-hong. Processing technology and research progress of dehydrated vegetables[J]. Farm Products Processing, 2013(9): 6-7. | |
| [3] | 孙小静, 刘军, 邹宇晓, 等. 脱水蔬菜加工过程中品质变化的研究进展[J]. 食品工业科技, 2014, 35(20): 388-392. |
| Sun Xiao-jing, Liu Jun, Zou Yu-xiao, et al. Research progress in the quality change of dehydrated vegetables in processing[J]. Science and Technology of Food Industry, 2014, 35(20): 388-392. | |
| [4] | Bhargava A, Bansal A, Goyal V. Machine learning-based detection and sorting of multiple vegetables and fruits[J]. Food Analytical Methods, 2022, 15(1): 228-242. |
| [5] | Kawamura S, Natsuga M, Takekura K, et al. Development of an automatic rice-quality inspection system[J]. Computers and Electronics in Agriculture, 2003, 40(1/3): 115-126. |
| [6] | Zhao Y S, Gong L, Huang Y X, et al. Robust tomato recognition for robotic harvesting using feature images fusion[J]. Sensors, 2016, 16(2): 173. |
| [7] | Hayashi S, Shigematsu K, Yamamoto S, et al. Evaluation of a strawberry-harvesting robot in a field test[J]. Biosystems Engineering, 2010, 105(2): 160-171. |
| [8] | Pandey V K, Srivastava S, Dash K K, et al. Machine learning algorithms and fundamentals as emerging safety tools in preservation of fruits and vegetables: a review[J]. Processes, 2023, 11(6): 1720. |
| [9] | Ji W, Qian Z J, Xu B, et al. A nighttime image enhancement method based on Retinex and guided filter for object recognition of apple harvesting robot[J]. International Journal of Advanced Robotic Systems, 2018, 15(1): 1-12. |
| [10] | Agarwal M, Gupta S K, Biswas K K. Development of efficient CNN model for tomato crop disease identification[J]. Sustainable Computing: Informatics and Systems, 2020, 28: 100407. |
| [11] | 王红军, 熊俊涛, 黎邹邹, 等. 基于机器视觉图像特征参数的马铃薯质量和形状分级方法[J]. 农业工程学报, 2016, 32(8): 272-277. |
| Wang Hong-jun, Xiong Jun-tao, Li Zou-zou, et al. Potato grading method of weight and shape based on imaging characteristics parameters in machine vision system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 272-277. | |
| [12] | Blanc P. Unit for sorting and packaging products capable of being hung on a hooking member for the purpose of their conveyance, such as bunches of fruits, in particular table grapes or truss tomatoes: US6957940B2[P]. 2005-10-25. |
| [13] | 叶晋涛, 王运祥, 杨杰, 等. 哈密瓜颜色特征提取及成熟度分级的研究[J]. 石河子大学学报(自然科学版), 2016, 34(1): 106-111. |
| Ye Jin-tao, Wang Yun-xiang, Yang Jie, et al. Research on maturity and classification of Hami melon based on color space feature extraction[J]. Journal of Shihezi University (Natural Science), 2016, 34(1): 106-111. | |
| [14] | 魏康丽, 王振杰, 孙柯, 等. 基于计算机视觉对苹果脆片外观品质分级[J]. 南京农业大学学报, 2017, 40(3): 547-555. |
| Wei Kang-li, Wang Zhen-jie, Sun Ke, et al. External quality classification of apple chips based on computer vision[J]. Journal of Nanjing Agricultural University, 2017, 40(3): 547-555. | |
| [15] | Baigvand M, Banakar A, Minaei S, et al. Machine vision system for grading of dried figs[J]. Computers and Electronics in Agriculture, 2015, 119: 158-165. |
| [16] | 马超伟, 张浩, 马新明, 等. 基于改进YOLOv8的轻量化小麦病害检测方法[J]. 农业工程学报, 2024, 40(5): 187-195. |
| Ma Chao-wei, Zhang Hao, Ma Xin-ming, et al. Lightweight wheat disease detection method based on improved YOLOv8[J]. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(5): 187-195. | |
| [17] | 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160. |
| Wang Chun-mei, Liu Huan. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160. | |
| [18] | 胡杰珍,杨靖荣,邓培昌,等.基于YOLO算法的金属表面腐蚀图像识别分析系统[J].材料保护, 2025, 58(9): 124-133. |
| Hu Jie-zhen, Yang Jing-rong, Deng Pei-chang, et al. Image recognition and analysis system for metal surface corrosion based on YOLO algorithm[J]. Materials Protection, 2025,58(9):124-133. | |
| [19] | Ye R, Shao G Q, He Y, et al. YOLOv8-RMDA: lightweight YOLOv8 network for early detection of small target diseases in tea[J]. Sensors, 2024, 24(9): 2896. |
| [20] | 王少聪,王会强,丁小明,等.基于改进YOLO v8n的草莓温室飞虫虫情监测方法[J].农业工程学报,2025,41(17):184-193. |
| Wang Shao-cong, Wang Hui-qiang, Ding Xiao-ming, et al. Pest monitoring in strawberry greenhouses using improved YOLO v8n[J]. Transactions of the Chinese Society of Agricultural Engineering, 2025, 41(17): 184-193. | |
| [21] | 白凯,张玉杰,苏邓文,等.基于改进YOLO v8n的花生叶片病害检测方法[J].农业机械学报, 2025, 56(6): 518-526, 564. |
| Bai Kai, Zhang Yu-jie, Su Deng-wen, et al. Peanut leaf disease detection method based on improved YOLO v8n[J]. Transactions of the Chinese Society for Agricultural Machinery, 2025, 56(6): 518-526, 564. | |
| [22] | Fang C, Yang X. Lightweight YOLOv8 for wheat head detection[J]. IEEE Access, 2024, 12: 66214-66222. |
| [23] | 刘梦姝,张春琪,晁金阳,等.基于YOLO v8n改进的小麦病害检测系统[J].农业机械学报, 2024, 55(S1): 280-287, 355. |
| Liu Meng-shu, Zhang Chun-qi, Chao Jin-yang, et al. Improved wheat disease detection system based on YOLO v8n[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(S1): 280-287, 355. | |
| [24] | 苑迎春, 耿俊, 许楠, 等. 基于YOLO v8-TRP模型的小麦麦穗识别方法研究[J]. 农业机械学报, 2025, 56(11): 499-508. |
| Yuan Ying-chun, Geng Jun, Xu Nan, et al. Wheat ear recognition method using YOLOv8-TRP model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2025, 56(11): 499-508. | |
| [25] | Wang C Y, Bochkovskiy A, Liao H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, 2023: 7464-7475. |
| [26] | Ge Z, Liu S T, Wang F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL]. 2021: arXiv: 2107.08430. . |
| [27] | 鲍禹辰, 徐增波, 田丙强. 基于YOLOv8改进的服装疵点检测算法[J]. 东华大学学报(自然科学版), 2024, 50(4): 49-56. |
| Bao Yu-chen, Xu Zeng-bo, Tian Bing-qiang. Improved garment defect detection algorithm based on YOLOv8[J]. Journal of Donghua University (Natural Science), 2024, 50(4): 49-56. | |
| [28] | Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Computer Vision-ECCV 2018. Cham: Springer, 2018: 122-138. |
| [29] | Srinivas A, Lin T Y, Parmar N, et al. Bottleneck transformers for visual recognition[EB/OL]. (2021-01-21) [2024-03-30]. |
| [30] | Wang J Q, Chen K, Xu R, et al. CARAFE: content-aware ReAssembly of FEatures[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, 2020: 3007-3016. |
| [31] | 李文举, 张干, 崔柳, 等. 基于坐标注意力的轻量级交通标志识别模型[J]. 计算机应用, 2023, 43(2): 608-614. |
| Li Wen-ju, Zhang Gan, Cui Liu, et al. Lightweight traffic sign recognition model based on coordinate attention[J]. Journal of Computer Applications, 2023, 43(2): 608-614. | |
| [32] | 马宏兴, 董凯兵, 王英菲, 等. 基于改进YOLO v5s的轻量化植物识别模型研究[J]. 农业机械学报, 2023, 54(8): 267-276. |
| Ma Hong-xing, Dong Kai-bing, Wang Ying-fei, et al. Lightweight plant recognition model based on improved YOLO v5s[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 267-276. | |
| [33] | Yang L X, Zhang R Y, Li L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//International Conference on Machine Learning.Vienna, 2021:11863-11874. |
| [34] | Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000. |
| [35] | Gevorgyan Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. (2022-05-25) [2024-03-30]. . |
| [36] | Koirala A, Walsh K B, Wang Z, et al. Deep learning for real-time fruit detection and orchard fruit load estimation: benchmarking of ‘MangoYOLO’[J]. Precision Agriculture, 2019, 20(6): 1107-1135. |
| [37] | Liu G X, Nouaze J C, Touko Mbouembe P L, et al. YOLO-tomato: a robust algorithm for tomato detection based on YOLOv3[J]. Sensors, 2020, 20(7): 2145. |
| [38] | Lawal O M. YOLOMuskmelon: quest for fruit detection speed and accuracy using deep learning[J]. IEEE Access, 2021, 9: 15221-15227. |
| [39] | Redmon J, Farhadi A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08) [2024-03-30].. |
| [40] | Deng S C, Mei F, Yang L, et al. Research on the hand-eye calibration method based on monocular robot[J]. Journal of Physics: Conference Series, 2021, 1820(1): 012007. |
| [1] | Aisan XIERAILI, De-fu CHE, Duo WANG, Tian YU. Perception Technology and Application of Complex Urban Traffic Environment Based on Target Detection [J]. Journal of Northeastern University(Natural Science), 2025, 46(5): 29-36. |
| [2] | Tao SUN, Liang-xin JI, Xian-li YANG, Xian-lei HU. Time and Space Constrained Variable Gauge Control Model and Application [J]. Journal of Northeastern University(Natural Science), 2025, 46(3): 46-51. |
| [3] | Xiao-peng SHA, De-han XIE, Zhou-peng GUO, Kai SUN. LIDD-Net: Lightweight Industrial Product Defect Detection Method Based on Deep Learning [J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 18-26. |
| [4] | Zhen-zhen LYU, Li-jin FANG, Qian-kun ZHAO, Ying-cai WAN. Defect Detection on PCB Based on Improved YOLOv8 [J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 1-9. |
| [5] | Xiao-ming CHEN, Jian-ye YU, Shun LIU, Chong ZENG. Lightweight Design of SUV Automobile Aluminum Alloy Wheel Hub Based on Finite Element Simulation [J]. Journal of Northeastern University(Natural Science), 2025, 46(1): 99-109. |
| [6] | Hong-tu XIE, Jia-xing CHEN, Lin ZHANG, Nan-nan ZHU. Lightweight Ship Recognition Algorithm Based on SNN in SAR Images [J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 474-482. |
| [7] | Bo HAO, Xin-yan XU, Yu-xin ZHAO, Jun-wei YAN. Surface Defect Detection of Riveting Holes Based on Improved YOLOv8 [J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1595-1603. |
| [8] | Ang FENG, Jun GONG, Nian WANG, Jing-long WANG. Pedestrian Trajectory Prediction Algorithm Based on Graph Convolution and Convolution [J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1529-1536. |
| [9] | JIANG Yang, ZHAO Feng-yu, CHEN Xiao. Research on Robotic Grasping Detection Based on Improved Cascade R-CNN Model [J]. Journal of Northeastern University(Natural Science), 2023, 44(6): 799-807. |
| [10] | BAO Ni-sha, HAN Zi-song, YU Jia-xin, WEI Li-hong. Remote Sensing Identification Method for Open-Pit Coal Mining Area Based on Improved Faster-RCNN [J]. Journal of Northeastern University(Natural Science), 2023, 44(12): 1759-1768. |
| [11] | YANG Chao-ran, LIAO Shan-shan, CHEN Da, KANG Yan. Automatic Measurement Method for Fetal Head Circumference Based on Convolution Neural Network [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1571-1577. |
| [12] | YU Zhe-zhou, LIU Yan, LIU Yuan-ning. Improved Iris Locating Algorithm Based on YOLOV3 [J]. Journal of Northeastern University(Natural Science), 2022, 43(4): 496-501. |
| [13] | ZHANG Yu, LIU Bo-quan, WU Tao, CHEN Xu. Bond-Slip Behavior Between Reinforcement Bars and High-Strength Lightweight Aggregate Concrete [J]. Journal of Northeastern University(Natural Science), 2022, 43(2): 274-282. |
| [14] | YANG Ai-ping, SONG Shang-yang, CHENG Si-meng. Lightweight Adaptive Feature Selection Network for Object Detection [J]. Journal of Northeastern University(Natural Science), 2021, 42(9): 1238-1245. |
| [15] | SONG Xin, LI Qi, XIE Wan-jun, LI Ning. YOLOv3-ADS:A Compression Model for Deep Learning Object Detection Based on YOLOv3 [J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 609-615. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||