
东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (10): 27-35.DOI: 10.12068/j.issn.1005-3026.2025.20240061
于淼, 汪万里, 魏永涛
收稿日期:2024-03-15
出版日期:2025-10-15
发布日期:2026-01-13
作者简介:于 淼(1986—),女,黑龙江佳木斯人,东北大学副教授.
基金资助:Miao YU, Wan-li WANG, Yong-tao WEI
Received:2024-03-15
Online:2025-10-15
Published:2026-01-13
摘要:
Wiener系统由线性动态子系统与静态非线性子系统串联组成,广泛应用于石油、化工等过程工业中,获得Wiener系统的模型具有重要意义.本文针对Wiener系统提出一种基于线性变化权重-列文伯格马夸尔特-拟牛顿(linear variable weight-Levenberg Marquardt-quasi Newton,LVW-LM-QN)算法的非线性系统辨识方法.将Wiener系统分成两个子系统分别处理,对于线性动态部分,采用规范变量分析(canonical variate analysis,CVA)算法的子空间识别方法进行参数估计;对于非线性静态部分,采用LVW-LM-QN算法进行辨识处理.最后通过数值例子和双储罐系统液位控制的应用案例来评估该方法,仿真结果验证了所提方法的有效性和精确性.
中图分类号:
于淼, 汪万里, 魏永涛. 基于LVW-LM-QN算法的Wiener系统辨识[J]. 东北大学学报(自然科学版), 2025, 46(10): 27-35.
Miao YU, Wan-li WANG, Yong-tao WEI. Identification of Wiener Systems Based on LVW-LM-QN Algorithm[J]. Journal of Northeastern University(Natural Science), 2025, 46(10): 27-35.
常量初始化:迭代最大值kmax,神经元权重 w1, w2,偏置参数b1,b2,算法停止标准e1,e2,学习率最值αmax,αmin, found= While(not found)and(k k=k+1; 通过 if method=LM 通过 初始化信赖域半径Δ if found=true else 通过 通过 if better=true if连续3次迭代都满足 则method切换到QN end if end if 更新 end if else if method=QN 通过 if found=true |
表1 Wiener系统LVW-LM-QN辨识算法 (for Wiener system)
Table 1 LVW-LM-QN identification algorithm
常量初始化:迭代最大值kmax,神经元权重 w1, w2,偏置参数b1,b2,算法停止标准e1,e2,学习率最值αmax,αmin, found= While(not found)and(k k=k+1; 通过 if method=LM 通过 初始化信赖域半径Δ if found=true else 通过 通过 if better=true if连续3次迭代都满足 则method切换到QN end if end if 更新 end if else if method=QN 通过 if found=true |
| 方法 | RMSE | MAPE |
|---|---|---|
| Subspace-based | 10.574 6 | 7.377 9 |
| LM | 1.627 3 | 1.281 1 |
| LVW-LM-QN | 0.497 4 | 0.317 1 |
表2 不同识别方法的均方根误差及平均绝对百分比误差 (methods)
Table 2 RMSE and MAPE of different identification
| 方法 | RMSE | MAPE |
|---|---|---|
| Subspace-based | 10.574 6 | 7.377 9 |
| LM | 1.627 3 | 1.281 1 |
| LVW-LM-QN | 0.497 4 | 0.317 1 |
| 方法 | RMSE | MAPE |
|---|---|---|
| Subspace-based | 0.116 6 | 0.627 7 |
| LM | 0.123 2 | 0.854 3 |
| LVW-LM-QN | 0.042 5 | 0.242 7 |
表3 不同识别方法的均方根误差及平均绝对百分比误差 (methods)
Table 3 RMSE and MAPE of different identification
| 方法 | RMSE | MAPE |
|---|---|---|
| Subspace-based | 0.116 6 | 0.627 7 |
| LM | 0.123 2 | 0.854 3 |
| LVW-LM-QN | 0.042 5 | 0.242 7 |
| [1] | 陈山, 宋樱, 房胜男, 等. 基于头脑风暴优化算法的Wiener模型参数辨识[J]. 控制与决策, 2017, 32(12): 2291-2295. |
| Chen Shan, Song Ying, Fang Sheng-nan, et al. Parameter identification of Wiener systems using brain storm optimization algorithm[J]. Control and Decision, 2017, 32(12): 2291-2295. | |
| [2] | 白晶, 毛志忠, 浦铁成. 多变量Hammerstein-Wiener模型的参数辨识[J]. 东北大学学报(自然科学版), 2018, 39(1): 6-10. |
| Bai Jing, Mao Zhi-zhong, Pu Tie-cheng. Parameter identification of multivariate Hammerstein-Wiener model[J]. Journal of Northeastern University (Natural Science), 2018, 39(1): 6-10. | |
| [3] | Mao Y W, Ding F. Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique [J]. Nonlinear Dynamics, 2015,79(3): 1745-1755. |
| [4] | Ding F, Liu X M, Liu M M. The recursive least squares identification algorithm for a class of Wiener nonlinear systems [J]. Journal of the Franklin Institute, 2016, 353(7): 1518-1526. |
| [5] | Benítez M, Bermúdez A, Rodríguez-Calo J F. Adjoint method for parameter identification problems in models of stirred tank chemical reactors [J]. Chemical Engineering Research and Design, 2017, 123: 214-229. |
| [6] | Ghani F, Waser R, O’Donovan T S, et al. Non-linear system identification of a latent heat thermal energy storage system[J]. Applied Thermal Engineering, 2018, 134: 585-593. |
| [7] | Hsu Y L, Wang J S. A Wiener-type recurrent neural network and its control strategy for nonlinear dynamic applications [J]. Journal of Process Control, 2009, 19(6): 942-953. |
| [8] | Norquay S J, Palazoglu A, Romagnoli J A. Model predictive control based on Wiener models[J]. Chemical Engineering Science, 1998, 53(1): 75-84. |
| [9] | Norquay S J, Palazoglu A, Romagnoli J A. Application of Wiener model predictive control to a pH neutralization experiment[J]. IEEE Transactions on Control Systems Technology, 1999, 7(4): 437-445. |
| [10] | Shafiee G, Arefi M M, Jahed-Motlagh M R, et al. Nonlinear predictive control of a polymerization reactor based on piecewise linear Wiener model[J]. Chemical Engineering Journal, 2008, 143: 282-292. |
| [11] | Andrzej J, Józef K. Two-stage instrumental variables identification of polynomial Wiener systems with invertible nonlinearities[J]. International Journal of Applied Mathematics and Computer Science, 2019, 29(3): 571-580. |
| [12] | Ma J H, Zhao L H, Han Z Z, et al. Identification of Wiener model using least squares support vector machine optimized by adaptive particle swarm optimization[J]. Journal of Control Automation and Electrical Systems, 2015, 26: 609-615. |
| [13] | Qian S Y, Ding Z Y, Li F. Estimation of Wiener model based on neural fuzzy network[C] // 2023 IEEE 12th Data Driven Control and Learning Systems Conference. Xiangtan, 2023:1377-1380. |
| [14] | Hong X, Chen S. Modeling of complex-valued Wiener systems using B-spline neural network[J]. IEEE Transactions on Neural Networks, 2011, 22(5): 818-825. |
| [15] | 吴德会. 非线性动态系统的Wiener神经网络辨识法[J]. 控制理论与应用, 2009, 26(11): 1192-1196. |
| Wu De-hui. Identification method for nonlinear dynamic system using Wiener neural network[J]. Control Theory & Applications, 2009, 26(11): 1192-1196. | |
| [16] | Fukushima K. Neocognitron: a self organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics 1980, 36(4): 193-202. |
| [17] | Mohsen S, Mohammad F. Online identification of non-linear dynamic systems by Wiener system using subspace method and neural networks[J]. Transactions of the Institute of Measurement and Control, 2016, 40(2): 666-674. |
| [18] | Narendra K S, Annaswamy A M. Persistent excitation in adaptive systems[J]. International Journal of Control, 1987, 45(1): 127-160. |
| [19] | Bai E W. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems[J]. Automatica, 1998, 34(3): 333-338. |
| [20] | Frandsen R, Poul E, Kristian J, et al. Unconstrained optimization[M]. Lyngby: Technical University of Denmark, 1999. |
| [21] | Chiuso A. On the asymptotic properties of closed-loop CCA-type subspace algorithms: equivalence results and role of the future horizon[J]. IEEE Transactions on Automatic Control, 2010, 55(3): 634-649. |
| [22] | Loke M H, Dahlin T. A combined Gauss-Newton and quasi-Newton inversion method for the interpretation of apparent resistivity pseudo sections[C]// The 3rd Meeting of the European Association for Environmental and Engineering Geophysics. Aarhus, 1997: 139-142. |
| [23] | Bansal J C, Singh P K, Saraswat M, et al. Inertia weight strategies in particle swarm optimization[C]// 2011 Third World Congress on Nature and Biologically Inspired Computing. Salamanca, 2011: 633-640. |
| [24] | Larimore W. Canonical variate analysis in identification, filtering, and adaptive control[C] // Proceedings of the 29th IEEE Conference on Decision and Control. Honolulu, 1990: 596-604. |
| [25] | Gómez J C, Baeyens E. Subspace-based identification algorithms for Hammerstein and Wiener models[J]. European Journal of Control, 2005, 11(2): 127-136. |
| [26] | Chinthaned N, Sanposh P. Robust geometric control of a two-tank system[C] //2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Chiang Mai, 2016: 1-4. |
| [1] | 魏颖, 张家鹏, 崔佳琦, 黄通. 结合运动信息与双重注意力机制的两阶段SiamCAR跟踪算法[J]. 东北大学学报(自然科学版), 2025, 46(9): 9-16. |
| [2] | 李志刚, 牟明凯, 胡德安, 项楠. 基于图像融合技术的阿尔茨海默病检测研究[J]. 东北大学学报(自然科学版), 2025, 46(6): 1-7. |
| [3] | 吴杨俊, 李振平, 姚红良, 韩圣东. 考虑辅助部件的车辆动力总成系统建模方法与优化设计[J]. 东北大学学报(自然科学版), 2025, 46(4): 43-51. |
| [4] | 李小彭, 付嘉兴, 刘海龙, 尹猛. 柔性空间机械臂RBF神经网络补偿滑模控制策略[J]. 东北大学学报(自然科学版), 2024, 45(9): 1258-1267. |
| [5] | 刘林, 宋雨昊. 基于误差因子的改进WLS超宽带定位算法[J]. 东北大学学报(自然科学版), 2024, 45(9): 1235-1243. |
| [6] | 刘伟嵬, 刘炳君, 刘焕强, 刘泽远. 激光熔化沉积过程缺陷识别方法[J]. 东北大学学报(自然科学版), 2024, 45(8): 1150-1158. |
| [7] | 任涛, 刘昕靓, 陈宏峰, 马延路. 基于卷积神经网络的预警震级分段估算方法[J]. 东北大学学报(自然科学版), 2024, 45(8): 1073-1079. |
| [8] | 薛珮芸, 白静, 张楠, 赵建星. 基于VMD的双通道构音障碍语音特征图谱提取算法[J]. 东北大学学报(自然科学版), 2024, 45(6): 793-801. |
| [9] | 谢洪途, 陈佳兴, 张琳, 朱楠楠. 基于脉冲神经网络的轻量化SAR图像舰船识别算法[J]. 东北大学学报(自然科学版), 2024, 45(4): 474-482. |
| [10] | 杨爱萍, 方思捷, 邵明福, 张腾飞. 基于Transformer的多尺度水下图像增强网络[J]. 东北大学学报(自然科学版), 2024, 45(12): 1696-1705. |
| [11] | 刘梦园, 吴朝霞, 王金杨, 閤光磊. 基于TST-LSTM模型的烧结料层透气性预测[J]. 东北大学学报(自然科学版), 2024, 45(10): 1379-1385. |
| [12] | 吕艳霞, 郝帅, 乔广通, 邢烨. 一种基于图神经网络的社会化推荐算法[J]. 东北大学学报(自然科学版), 2024, 45(1): 10-17. |
| [13] | 郑艳, 赵佳旭, 边杰. 基于SiamBAN跟踪器改进的目标跟踪算法[J]. 东北大学学报(自然科学版), 2023, 44(9): 1227-1233. |
| [14] | 杨譞, 何占奇. 改进的两层BiLSTM的心电信号分割方法[J]. 东北大学学报(自然科学版), 2023, 44(12): 1705-1711. |
| [15] | 孙颖, 李泽, 张雪英. 基于约束式双通道模型的语音情感识别[J]. 东北大学学报(自然科学版), 2023, 44(11): 1537-1542. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||