东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (10): 27-35.DOI: 10.12068/j.issn.1005-3026.2025.20240061

• 信息与控制 • 上一篇    下一篇

基于LVW-LM-QN算法的Wiener系统辨识

于淼, 汪万里, 魏永涛   

  1. 东北大学 信息科学与工程学院,辽宁 沈阳 110819
  • 收稿日期:2024-03-15 出版日期:2025-10-15 发布日期:2026-01-13
  • 作者简介:于 淼(1986—),女,黑龙江佳木斯人,东北大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(62003082);河北省自然科学基金资助项目(F2021501018);河北省教育厅科学技术研究资助项目(ZD2022148)

Identification of Wiener Systems Based on LVW-LM-QN Algorithm

Miao YU, Wan-li WANG, Yong-tao WEI   

  1. School of Information Science & Engineering,Northeastern University,Shenyang 110819,China. Corresponding author: YU Miao,E-mail: yumiao@neuq. edu. cn
  • Received:2024-03-15 Online:2025-10-15 Published:2026-01-13

摘要:

Wiener系统由线性动态子系统与静态非线性子系统串联组成,广泛应用于石油、化工等过程工业中,获得Wiener系统的模型具有重要意义.本文针对Wiener系统提出一种基于线性变化权重-列文伯格马夸尔特-拟牛顿(linear variable weight-Levenberg Marquardt-quasi Newton,LVW-LM-QN)算法的非线性系统辨识方法.将Wiener系统分成两个子系统分别处理,对于线性动态部分,采用规范变量分析(canonical variate analysis,CVA)算法的子空间识别方法进行参数估计;对于非线性静态部分,采用LVW-LM-QN算法进行辨识处理.最后通过数值例子和双储罐系统液位控制的应用案例来评估该方法,仿真结果验证了所提方法的有效性和精确性.

关键词: Wiener系统, 子空间方法, LVW-LM-QN算法, 神经网络, CVA算法

Abstract:

Wiener systems, consisting of a linear dynamic subsystem and a static nonlinear subsystem in series, find extensive application in process industries such as petroleum and chemical engineering. Obtaining the model of Wiener systems holds significant importance. A nonlinear system identification method based on the linear variable weight–Levenberg Marquardt–quasi Newton (LVW-LM-QN) algorithm for Wiener systems was proposed. The Wiener system was divided into two subsystems for separate processing. For the linear dynamic part, the subspace identification method with the canonical variate analysis (CVA) algorithm was used for parameter estimation, whereas for the subsequent nonlinear static part, the LVW-LM-QN algorithm was employed for identification. Finally, the method was evaluated through numerical examples and an application case of liquid level control in a two-tank system, and the effectiveness and accuracy of the proposed method were verified by the simulation results.

Key words: Wiener system, subspace method, LVW-LM-QN algorithm, neural network, CVA algorithm

中图分类号: