东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (4): 548-552.DOI: 10.12068/j.issn.1005-3026.2019.04.018

• 资源与土木工程 • 上一篇    下一篇

基于Matlab和粒子群算法的磨矿技术效率预测模型

周文涛1, 韩跃新1, 李艳军1, 杨金林2   

  1. (1. 东北大学 资源与土木工程学院, 辽宁 沈阳110819; 2. 广西大学 资源环境与材料学院, 广西 南宁530004)
  • 收稿日期:2018-03-05 修回日期:2018-03-05 出版日期:2019-04-15 发布日期:2019-04-26
  • 通讯作者: 周文涛
  • 作者简介:周文涛(1990-),男,河南兰考人,东北大学博士研究生; 韩跃新(1961-),男,内蒙古赤峰人,东北大学教授,博士生导师; 李艳军(1972-),男,内蒙古赤峰人,东北大学教授.
  • 基金资助:
    国家自然科学基金资助项目(51741401,51264001,51874105,51734005).

Grinding Technical Efficiency Prediction Model Based on Matlab and Particle Swarm Optimization

ZHOU Wen-tao1, HAN Yue-xin1, LI Yan-jun1, YANG Jin-lin2   

  1. 1. School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; 2. School of Resources Environment and Materials, Guangxi University, Nanning 530004, China.
  • Received:2018-03-05 Revised:2018-03-05 Online:2019-04-15 Published:2019-04-26
  • Contact: LI Yan-jun
  • About author:-
  • Supported by:
    -

摘要: 研究了磨矿时间、干矿质量分数和充填率对锡石多金属硫化矿磨矿技术效率的影响.结果表明,在最优的磨矿参数条件下,即磨矿时间为8min、干矿质量分数为65%、充填率为42%时,锡石和硫化矿二元结构所对应的磨矿技术效率最佳.通过Matlab的广义回归神经网络(GRNN)计算程序建立了一种磨矿技术效率预测模型,利用粒子群算法对模型参数进行优化,并通过试验验证了模型的适用性和可靠性.

关键词: 锡石多金属硫化矿, 磨矿优化, 磨矿技术效率, 粒子群算法, GRNN模型优化

Abstract: The effect of grinding time, dry ore mass fraction and filling rate on the grinding technical efficiency of cassiterite polymetallic sulfide ore were studied. The results showed that the grinding efficiency corresponding to the binary structure of cassiterite and sulfide ore is the best when the grinding time is 8min, the dry ore mass fraction is 65%, and the filling rate is 42%. A grinding technical efficiency prediction model was established by using the generalized regression neural network(GRNN) program of Matlab. The model parameters were optimized by the particle swarm optimization. The applicability and reliability of the model were verified by experiments.

Key words: cassiterite polymetallic sulfide ore, grinding optimization, grinding technical efficiency, particle swarm optimization, GRNN(generalized regression neural network)

中图分类号: