东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (12): 1767-1772.DOI: 10.12068/j.issn.1005-3026.2019.12.018

• 机械工程 • 上一篇    下一篇

基于混合循环算法的复杂装配体装配序列智能规划

曲兴田, 张昆, 王学旭, 王宏一   

  1. (吉林大学 机械与航空航天工程学院, 吉林 长春130025)
  • 收稿日期:2019-01-11 修回日期:2019-01-11 出版日期:2019-12-15 发布日期:2019-12-12
  • 通讯作者: 曲兴田
  • 作者简介:曲兴田(1962-),男,吉林德惠人,吉林大学教授.
  • 基金资助:
    国家自然科学基金资助项目(51875248).

Hybrid Cycle Algorithm-based Intelligent Assembly Sequence Planning of Complex Assembly

QU Xing-tian, ZHANG Kun, WANG Xue-xu, WANG Hong-yi   

  1. School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
  • Received:2019-01-11 Revised:2019-01-11 Online:2019-12-15 Published:2019-12-12
  • Contact: QU Xing-tian
  • About author:-
  • Supported by:
    -

摘要: 针对单一算法无法实现复杂装配体装配序列智能规划以及缺乏深度人机交互而导致的改进效果不佳等问题,提出一种混合循环算法.该算法以遗传算法为主体,利用干涉矩阵和接触矩阵调整随机生成的装配序列,以装配方向及工具的统一性构建适应度函数;其次结合模拟退火算法,在迭代前加入退火操作,利用Metropolis准则接受交叉和变异后的个体序列;引入粒子群算法的跟踪极值思想,直接选择个体最优和群体最优序列与后代交叉;最后结合虚拟现实技术建立装配模拟平台,从装配稳定性及工具操作空间两个维度进一步优化序列.基于该方法以汽车后桥总成装配序列规划为例进行验证,表明所得装配序列符合实际生产,该方法切实有效.

关键词: 装配序列智能规划, 遗传算法, 粒子群算法, 模拟退火算法, 虚拟现实

Abstract: A hybrid cycle algorithm was proposed aiming at solving the problems that single algorithm cannot realize intelligent assembly sequence planning of complex assembly and the lack of deep human-computer interaction causes poor improvement effects. This algorithm, based on genetic algorithm, uses interference matrix and contact matrix to adjust random assembly sequence and constructs fitness function on the basis of the uniformity of assembly direction and tool. In addition, combining with simulated annealing algorithm, adding annealing operation and using Metropolis criterion, individual sequences were obtained and accepted by crossover and mutation. Meanwhile, by introducing particle swarm optimization, optimal sequence of individuals and groups were selected to cross with the offspring directly. Finally, assembly simulation platform combined with virtual reality were built and the sequence was optimized from the two dimensions of assembly stability and tool operation space. In conclusion, taking automobile rear axle assembly as an example, it is shown that the assembly sequence obtained fits actual production and the method is effective and practical.

Key words: intelligent assembly sequence planning, genetic algorithm, particle swarm optimization algorithm, simulated annealing algorithm, virtual reality

中图分类号: